spaCy/spacy/tests/test_models.py
Matthew Honnibal b392d48e76 Fix test
2020-10-05 20:17:07 +02:00

188 lines
5.9 KiB
Python

from typing import List
import pytest
from thinc.api import fix_random_seed, Adam, set_dropout_rate
from numpy.testing import assert_array_equal
import numpy
from spacy.ml.models import build_Tok2Vec_model, MultiHashEmbed, MaxoutWindowEncoder
from spacy.ml.models import build_text_classifier, build_simple_cnn_text_classifier
from spacy.lang.en import English
from spacy.lang.en.examples import sentences as EN_SENTENCES
def get_textcat_kwargs():
return {
"width": 64,
"embed_size": 2000,
"pretrained_vectors": None,
"exclusive_classes": False,
"ngram_size": 1,
"window_size": 1,
"conv_depth": 2,
"dropout": None,
"nO": 7,
}
def get_textcat_cnn_kwargs():
return {
"tok2vec": test_tok2vec(),
"exclusive_classes": False,
"nO": 13,
}
def get_all_params(model):
params = []
for node in model.walk():
for name in node.param_names:
params.append(node.get_param(name).ravel())
return node.ops.xp.concatenate(params)
def get_docs():
nlp = English()
return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
def get_gradient(model, Y):
if isinstance(Y, model.ops.xp.ndarray):
dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
return dY
elif isinstance(Y, List):
return [get_gradient(model, y) for y in Y]
else:
raise ValueError(f"Could not get gradient for type {type(Y)}")
def get_tok2vec_kwargs():
# This actually creates models, so seems best to put it in a function.
return {
"embed": MultiHashEmbed(
width=32,
rows=[500, 500, 500],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False
),
"encode": MaxoutWindowEncoder(
width=32, depth=2, maxout_pieces=2, window_size=1
),
}
def test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs())
def test_multi_hash_embed():
embed = MultiHashEmbed(
width=32,
rows=[500, 500, 500],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False
)
hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
assert len(hash_embeds) == 3
# Check they look at different columns.
assert list(sorted(he.attrs["column"] for he in hash_embeds)) == [0, 1, 2]
# Check they use different seeds
assert len(set(he.attrs["seed"] for he in hash_embeds)) == 3
# Check they all have the same number of rows
assert [he.get_dim("nV") for he in hash_embeds] == [500, 500, 500]
# Now try with different row factors
embed = MultiHashEmbed(
width=32,
rows=[1000, 50, 250],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False
)
hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
assert [he.get_dim("nV") for he in hash_embeds] == [1000, 50, 250]
@pytest.mark.parametrize(
"seed,model_func,kwargs",
[
(0, build_Tok2Vec_model, get_tok2vec_kwargs()),
(0, build_text_classifier, get_textcat_kwargs()),
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
],
)
def test_models_initialize_consistently(seed, model_func, kwargs):
fix_random_seed(seed)
model1 = model_func(**kwargs)
model1.initialize()
fix_random_seed(seed)
model2 = model_func(**kwargs)
model2.initialize()
params1 = get_all_params(model1)
params2 = get_all_params(model2)
assert_array_equal(params1, params2)
@pytest.mark.parametrize(
"seed,model_func,kwargs,get_X",
[
(0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
(0, build_text_classifier, get_textcat_kwargs(), get_docs),
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
],
)
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
fix_random_seed(seed)
model1 = model_func(**kwargs).initialize()
Y1 = model1.predict(get_X())
fix_random_seed(seed)
model2 = model_func(**kwargs).initialize()
Y2 = model2.predict(get_X())
if model1.has_ref("tok2vec"):
tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
for i in range(len(tok2vec1)):
for j in range(len(tok2vec1[i])):
assert_array_equal(
numpy.asarray(tok2vec1[i][j]), numpy.asarray(tok2vec2[i][j])
)
if isinstance(Y1, numpy.ndarray):
assert_array_equal(Y1, Y2)
elif isinstance(Y1, List):
assert len(Y1) == len(Y2)
for y1, y2 in zip(Y1, Y2):
assert_array_equal(y1, y2)
else:
raise ValueError(f"Could not compare type {type(Y1)}")
@pytest.mark.parametrize(
"seed,dropout,model_func,kwargs,get_X",
[
(0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
(0, 0.2, build_text_classifier, get_textcat_kwargs(), get_docs),
(0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
],
)
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
def get_updated_model():
fix_random_seed(seed)
optimizer = Adam(0.001)
model = model_func(**kwargs).initialize()
initial_params = get_all_params(model)
set_dropout_rate(model, dropout)
for _ in range(5):
Y, get_dX = model.begin_update(get_X())
dY = get_gradient(model, Y)
get_dX(dY)
model.finish_update(optimizer)
updated_params = get_all_params(model)
with pytest.raises(AssertionError):
assert_array_equal(initial_params, updated_params)
return model
model1 = get_updated_model()
model2 = get_updated_model()
assert_array_equal(get_all_params(model1), get_all_params(model2))