mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 12:18:04 +03:00
278 lines
8.5 KiB
Python
278 lines
8.5 KiB
Python
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
|
from thinc.neural import Model, Maxout, Softmax, Affine
|
|
from thinc.neural._classes.hash_embed import HashEmbed
|
|
from thinc.neural.ops import NumpyOps, CupyOps
|
|
|
|
from thinc.neural._classes.convolution import ExtractWindow
|
|
from thinc.neural._classes.static_vectors import StaticVectors
|
|
from thinc.neural._classes.batchnorm import BatchNorm
|
|
from thinc.neural._classes.resnet import Residual
|
|
from thinc.neural import ReLu
|
|
from thinc import describe
|
|
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
|
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
|
|
|
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
|
from .tokens.doc import Doc
|
|
|
|
import numpy
|
|
|
|
|
|
def _init_for_precomputed(W, ops):
|
|
reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2]))
|
|
ops.xavier_uniform_init(reshaped)
|
|
W[:] = reshaped.reshape(W.shape)
|
|
|
|
@describe.on_data(_set_dimensions_if_needed)
|
|
@describe.attributes(
|
|
nI=Dimension("Input size"),
|
|
nF=Dimension("Number of features"),
|
|
nO=Dimension("Output size"),
|
|
W=Synapses("Weights matrix",
|
|
lambda obj: (obj.nF, obj.nO, obj.nI),
|
|
lambda W, ops: _init_for_precomputed(W, ops)),
|
|
b=Biases("Bias vector",
|
|
lambda obj: (obj.nO,)),
|
|
d_W=Gradient("W"),
|
|
d_b=Gradient("b")
|
|
)
|
|
class PrecomputableAffine(Model):
|
|
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nO = nO
|
|
self.nI = nI
|
|
self.nF = nF
|
|
|
|
def begin_update(self, X, drop=0.):
|
|
# X: (b, i)
|
|
# Yf: (b, f, i)
|
|
# dY: (b, o)
|
|
# dYf: (b, f, o)
|
|
#Yf = numpy.einsum('bi,foi->bfo', X, self.W)
|
|
Yf = self.ops.xp.tensordot(
|
|
X, self.W, axes=[[1], [2]])
|
|
Yf += self.b
|
|
def backward(dY_ids, sgd=None):
|
|
tensordot = self.ops.xp.tensordot
|
|
dY, ids = dY_ids
|
|
Xf = X[ids]
|
|
|
|
#dXf = numpy.einsum('bo,foi->bfi', dY, self.W)
|
|
dXf = tensordot(dY, self.W, axes=[[1], [1]])
|
|
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
|
|
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
|
# ofi -> foi
|
|
self.d_W += dW.transpose((1, 0, 2))
|
|
self.d_b += dY.sum(axis=0)
|
|
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return dXf
|
|
return Yf, backward
|
|
|
|
|
|
@describe.on_data(_set_dimensions_if_needed)
|
|
@describe.attributes(
|
|
nI=Dimension("Input size"),
|
|
nF=Dimension("Number of features"),
|
|
nP=Dimension("Number of pieces"),
|
|
nO=Dimension("Output size"),
|
|
W=Synapses("Weights matrix",
|
|
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
|
|
lambda W, ops: ops.xavier_uniform_init(W)),
|
|
b=Biases("Bias vector",
|
|
lambda obj: (obj.nO, obj.nP)),
|
|
d_W=Gradient("W"),
|
|
d_b=Gradient("b")
|
|
)
|
|
class PrecomputableMaxouts(Model):
|
|
def __init__(self, nO=None, nI=None, nF=None, pieces=3, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nO = nO
|
|
self.nP = pieces
|
|
self.nI = nI
|
|
self.nF = nF
|
|
|
|
def begin_update(self, X, drop=0.):
|
|
# X: (b, i)
|
|
# Yfp: (b, f, o, p)
|
|
# Xf: (f, b, i)
|
|
# dYp: (b, o, p)
|
|
# W: (f, o, p, i)
|
|
# b: (o, p)
|
|
|
|
# bi,opfi->bfop
|
|
# bop,fopi->bfi
|
|
# bop,fbi->opfi : fopi
|
|
|
|
tensordot = self.ops.xp.tensordot
|
|
ascontiguous = self.ops.xp.ascontiguousarray
|
|
|
|
Yfp = tensordot(X, self.W, axes=[[1], [3]])
|
|
Yfp += self.b
|
|
|
|
def backward(dYp_ids, sgd=None):
|
|
dYp, ids = dYp_ids
|
|
Xf = X[ids]
|
|
|
|
dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]])
|
|
dW = tensordot(dYp, Xf, axes=[[0], [0]])
|
|
|
|
self.d_W += dW.transpose((2, 0, 1, 3))
|
|
self.d_b += dYp.sum(axis=0)
|
|
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return dXf
|
|
return Yfp, backward
|
|
|
|
def Tok2Vec(width, embed_size, preprocess=None):
|
|
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
|
|
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
|
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
|
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2)
|
|
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2)
|
|
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
|
|
|
|
tok2vec = (
|
|
with_flatten(
|
|
asarray(Model.ops, dtype='uint64')
|
|
>> (lower | prefix | suffix | shape )
|
|
>> Maxout(width, width*4, pieces=3)
|
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
|
|
pad=4, ndim=5)
|
|
)
|
|
if preprocess not in (False, None):
|
|
tok2vec = preprocess >> tok2vec
|
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
|
tok2vec.nO = width
|
|
return tok2vec
|
|
|
|
|
|
def asarray(ops, dtype):
|
|
def forward(X, drop=0.):
|
|
return ops.asarray(X, dtype=dtype), None
|
|
return layerize(forward)
|
|
|
|
|
|
def foreach(layer):
|
|
def forward(Xs, drop=0.):
|
|
results = []
|
|
backprops = []
|
|
for X in Xs:
|
|
result, bp = layer.begin_update(X, drop=drop)
|
|
results.append(result)
|
|
backprops.append(bp)
|
|
def backward(d_results, sgd=None):
|
|
dXs = []
|
|
for d_result, backprop in zip(d_results, backprops):
|
|
dXs.append(backprop(d_result, sgd))
|
|
return dXs
|
|
return results, backward
|
|
model = layerize(forward)
|
|
model._layers.append(layer)
|
|
return model
|
|
|
|
|
|
def rebatch(size, layer):
|
|
ops = layer.ops
|
|
def forward(X, drop=0.):
|
|
if X.shape[0] < size:
|
|
return layer.begin_update(X)
|
|
parts = _divide_array(X, size)
|
|
results, bp_results = zip(*[layer.begin_update(p, drop=drop)
|
|
for p in parts])
|
|
y = ops.flatten(results)
|
|
def backward(dy, sgd=None):
|
|
d_parts = [bp(y, sgd=sgd) for bp, y in
|
|
zip(bp_results, _divide_array(dy, size))]
|
|
try:
|
|
dX = ops.flatten(d_parts)
|
|
except TypeError:
|
|
dX = None
|
|
except ValueError:
|
|
dX = None
|
|
return dX
|
|
return y, backward
|
|
model = layerize(forward)
|
|
model._layers.append(layer)
|
|
return model
|
|
|
|
|
|
def _divide_array(X, size):
|
|
parts = []
|
|
index = 0
|
|
while index < len(X):
|
|
parts.append(X[index : index + size])
|
|
index += size
|
|
return parts
|
|
|
|
|
|
def get_col(idx):
|
|
assert idx >= 0, idx
|
|
def forward(X, drop=0.):
|
|
assert idx >= 0, idx
|
|
if isinstance(X, numpy.ndarray):
|
|
ops = NumpyOps()
|
|
else:
|
|
ops = CupyOps()
|
|
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
|
|
def backward(y, sgd=None):
|
|
assert idx >= 0, idx
|
|
dX = ops.allocate(X.shape)
|
|
dX[:, idx] += y
|
|
return dX
|
|
return output, backward
|
|
return layerize(forward)
|
|
|
|
|
|
def zero_init(model):
|
|
def _hook(self, X, y=None):
|
|
self.W.fill(0)
|
|
model.on_data_hooks.append(_hook)
|
|
return model
|
|
|
|
|
|
def doc2feats(cols=None):
|
|
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
|
|
def forward(docs, drop=0.):
|
|
feats = []
|
|
for doc in docs:
|
|
feats.append(doc.to_array(cols))
|
|
return feats, None
|
|
model = layerize(forward)
|
|
model.cols = cols
|
|
return model
|
|
|
|
def print_shape(prefix):
|
|
def forward(X, drop=0.):
|
|
return X, lambda dX, **kwargs: dX
|
|
return layerize(forward)
|
|
|
|
|
|
@layerize
|
|
def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|
ops = Model.ops
|
|
tokens, attrs, vectors = tokens_attrs_vectors
|
|
def backward(d_output, sgd=None):
|
|
return (tokens, d_output)
|
|
return vectors, backward
|
|
|
|
|
|
@layerize
|
|
def flatten(seqs, drop=0.):
|
|
if isinstance(seqs[0], numpy.ndarray):
|
|
ops = NumpyOps()
|
|
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
|
|
ops = CupyOps()
|
|
else:
|
|
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
|
|
lengths = [len(seq) for seq in seqs]
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths)
|
|
X = ops.xp.vstack(seqs)
|
|
return X, finish_update
|