mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
1ddf2f39c7
* Switch converters to generator functions To reduce the memory usage when converting large corpora, refactor the convert methods to be generator functions. * Update tests
63 lines
2.3 KiB
Python
63 lines
2.3 KiB
Python
from wasabi import Printer
|
|
|
|
from .conll_ner_to_docs import n_sents_info
|
|
from ...vocab import Vocab
|
|
from ...training import iob_to_biluo, tags_to_entities
|
|
from ...tokens import Doc, Span
|
|
from ...errors import Errors
|
|
from ...util import minibatch
|
|
|
|
|
|
def iob_to_docs(input_data, n_sents=10, no_print=False, *args, **kwargs):
|
|
"""
|
|
Convert IOB files with one sentence per line and tags separated with '|'
|
|
into Doc objects so they can be saved. IOB and IOB2 are accepted.
|
|
|
|
Sample formats:
|
|
|
|
I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O
|
|
I|O like|O London|B-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O
|
|
I|PRP|O like|VBP|O London|NNP|I-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O
|
|
I|PRP|O like|VBP|O London|NNP|B-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O
|
|
"""
|
|
vocab = Vocab() # need vocab to make a minimal Doc
|
|
msg = Printer(no_print=no_print)
|
|
if n_sents > 0:
|
|
n_sents_info(msg, n_sents)
|
|
yield from read_iob(input_data.split("\n"), vocab, n_sents)
|
|
|
|
|
|
def read_iob(raw_sents, vocab, n_sents):
|
|
for group in minibatch(raw_sents, size=n_sents):
|
|
tokens = []
|
|
words = []
|
|
tags = []
|
|
iob = []
|
|
sent_starts = []
|
|
for line in group:
|
|
if not line.strip():
|
|
continue
|
|
sent_tokens = [t.split("|") for t in line.split()]
|
|
if len(sent_tokens[0]) == 3:
|
|
sent_words, sent_tags, sent_iob = zip(*sent_tokens)
|
|
elif len(sent_tokens[0]) == 2:
|
|
sent_words, sent_iob = zip(*sent_tokens)
|
|
sent_tags = ["-"] * len(sent_words)
|
|
else:
|
|
raise ValueError(Errors.E902)
|
|
words.extend(sent_words)
|
|
tags.extend(sent_tags)
|
|
iob.extend(sent_iob)
|
|
tokens.extend(sent_tokens)
|
|
sent_starts.append(True)
|
|
sent_starts.extend([False for _ in sent_words[1:]])
|
|
doc = Doc(vocab, words=words)
|
|
for i, tag in enumerate(tags):
|
|
doc[i].tag_ = tag
|
|
for i, sent_start in enumerate(sent_starts):
|
|
doc[i].is_sent_start = sent_start
|
|
biluo = iob_to_biluo(iob)
|
|
entities = tags_to_entities(biluo)
|
|
doc.ents = [Span(doc, start=s, end=e + 1, label=L) for (L, s, e) in entities]
|
|
yield doc
|