mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
b6e991440c
* Auto-format tests with black * Add flake8 config * Tidy up and remove unused imports * Fix redefinitions of test functions * Replace orths_and_spaces with words and spaces * Fix compatibility with pytest 4.0 * xfail test for now Test was previously overwritten by following test due to naming conflict, so failure wasn't reported * Unfail passing test * Only use fixture via arguments Fixes pytest 4.0 compatibility
86 lines
3.1 KiB
Python
86 lines
3.1 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
|
|
from spacy.gold import docs_to_json
|
|
from spacy.tokens import Doc
|
|
from .util import get_doc
|
|
|
|
|
|
def test_gold_biluo_U(en_vocab):
|
|
words = ["I", "flew", "to", "London", "."]
|
|
spaces = [True, True, True, False, True]
|
|
doc = Doc(en_vocab, words=words, spaces=spaces)
|
|
entities = [(len("I flew to "), len("I flew to London"), "LOC")]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ["O", "O", "O", "U-LOC", "O"]
|
|
|
|
|
|
def test_gold_biluo_BL(en_vocab):
|
|
words = ["I", "flew", "to", "San", "Francisco", "."]
|
|
spaces = [True, True, True, True, False, True]
|
|
doc = Doc(en_vocab, words=words, spaces=spaces)
|
|
entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
|
|
|
|
|
|
def test_gold_biluo_BIL(en_vocab):
|
|
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
|
|
spaces = [True, True, True, True, True, False, True]
|
|
doc = Doc(en_vocab, words=words, spaces=spaces)
|
|
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
|
|
|
|
|
|
def test_gold_biluo_misalign(en_vocab):
|
|
words = ["I", "flew", "to", "San", "Francisco", "Valley."]
|
|
spaces = [True, True, True, True, True, False]
|
|
doc = Doc(en_vocab, words=words, spaces=spaces)
|
|
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ["O", "O", "O", "-", "-", "-"]
|
|
|
|
|
|
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
|
|
text = "I flew to Silicon Valley via London."
|
|
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
|
|
offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
|
|
doc = en_tokenizer(text)
|
|
biluo_tags_converted = biluo_tags_from_offsets(doc, offsets)
|
|
assert biluo_tags_converted == biluo_tags
|
|
offsets_converted = offsets_from_biluo_tags(doc, biluo_tags)
|
|
assert offsets_converted == offsets
|
|
|
|
|
|
def test_docs_to_json(en_vocab):
|
|
"""Test we can convert a list of Doc objects into the JSON-serializable
|
|
format we use for training.
|
|
"""
|
|
docs = [
|
|
get_doc(
|
|
en_vocab,
|
|
words=["a", "b"],
|
|
pos=["VBP", "NN"],
|
|
heads=[0, -1],
|
|
deps=["ROOT", "dobj"],
|
|
ents=[],
|
|
),
|
|
get_doc(
|
|
en_vocab,
|
|
words=["c", "d", "e"],
|
|
pos=["VBP", "NN", "NN"],
|
|
heads=[0, -1, -2],
|
|
deps=["ROOT", "dobj", "dobj"],
|
|
ents=[(1, 2, "ORG")],
|
|
),
|
|
]
|
|
json_doc = docs_to_json(0, docs)
|
|
assert json_doc["id"] == 0
|
|
assert len(json_doc["paragraphs"]) == 2
|
|
assert len(json_doc["paragraphs"][0]["sentences"]) == 1
|
|
assert len(json_doc["paragraphs"][1]["sentences"]) == 1
|
|
assert len(json_doc["paragraphs"][0]["sentences"][0]["tokens"]) == 2
|
|
assert len(json_doc["paragraphs"][1]["sentences"][0]["tokens"]) == 3
|