mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
188 lines
6.5 KiB
Python
188 lines
6.5 KiB
Python
from typing import Optional, Tuple, Dict, List
|
|
|
|
from ...symbols import ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
|
|
from ...lemmatizer import Lemmatizer
|
|
from ...lookups import Lookups
|
|
|
|
|
|
PUNCT_RULES = {"«": '"', "»": '"'}
|
|
|
|
|
|
class RussianLemmatizer(Lemmatizer):
|
|
_morph = None
|
|
|
|
def __init__(self, lookups: Optional[Lookups] = None) -> None:
|
|
super(RussianLemmatizer, self).__init__(lookups)
|
|
try:
|
|
from pymorphy2 import MorphAnalyzer
|
|
except ImportError:
|
|
raise ImportError(
|
|
"The Russian lemmatizer requires the pymorphy2 library: "
|
|
'try to fix it with "pip install pymorphy2==0.8" '
|
|
'or "pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"'
|
|
"if you need Ukrainian too"
|
|
)
|
|
if RussianLemmatizer._morph is None:
|
|
RussianLemmatizer._morph = MorphAnalyzer()
|
|
|
|
def __call__(
|
|
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
|
) -> List[str]:
|
|
univ_pos = self.normalize_univ_pos(univ_pos)
|
|
if univ_pos == "PUNCT":
|
|
return [PUNCT_RULES.get(string, string)]
|
|
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
|
|
# Skip unchangeable pos
|
|
return [string.lower()]
|
|
analyses = self._morph.parse(string)
|
|
filtered_analyses = []
|
|
for analysis in analyses:
|
|
if not analysis.is_known:
|
|
# Skip suggested parse variant for unknown word for pymorphy
|
|
continue
|
|
analysis_pos, _ = oc2ud(str(analysis.tag))
|
|
if analysis_pos == univ_pos or (
|
|
analysis_pos in ("NOUN", "PROPN") and univ_pos in ("NOUN", "PROPN")
|
|
):
|
|
filtered_analyses.append(analysis)
|
|
if not len(filtered_analyses):
|
|
return [string.lower()]
|
|
if morphology is None or (len(morphology) == 1 and POS in morphology):
|
|
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
|
if univ_pos in ("ADJ", "DET", "NOUN", "PROPN"):
|
|
features_to_compare = ["Case", "Number", "Gender"]
|
|
elif univ_pos == "NUM":
|
|
features_to_compare = ["Case", "Gender"]
|
|
elif univ_pos == "PRON":
|
|
features_to_compare = ["Case", "Number", "Gender", "Person"]
|
|
else: # VERB
|
|
features_to_compare = [
|
|
"Aspect",
|
|
"Gender",
|
|
"Mood",
|
|
"Number",
|
|
"Tense",
|
|
"VerbForm",
|
|
"Voice",
|
|
]
|
|
analyses, filtered_analyses = filtered_analyses, []
|
|
for analysis in analyses:
|
|
_, analysis_morph = oc2ud(str(analysis.tag))
|
|
for feature in features_to_compare:
|
|
if (
|
|
feature in morphology
|
|
and feature in analysis_morph
|
|
and morphology[feature].lower() != analysis_morph[feature].lower()
|
|
):
|
|
break
|
|
else:
|
|
filtered_analyses.append(analysis)
|
|
if not len(filtered_analyses):
|
|
return [string.lower()]
|
|
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
|
|
|
@staticmethod
|
|
def normalize_univ_pos(univ_pos: str) -> Optional[str]:
|
|
if isinstance(univ_pos, str):
|
|
return univ_pos.upper()
|
|
symbols_to_str = {
|
|
ADJ: "ADJ",
|
|
DET: "DET",
|
|
NOUN: "NOUN",
|
|
NUM: "NUM",
|
|
PRON: "PRON",
|
|
PROPN: "PROPN",
|
|
PUNCT: "PUNCT",
|
|
VERB: "VERB",
|
|
}
|
|
if univ_pos in symbols_to_str:
|
|
return symbols_to_str[univ_pos]
|
|
return None
|
|
|
|
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
|
analyses = self._morph.parse(string)
|
|
if len(analyses) == 1:
|
|
return analyses[0].normal_form
|
|
return string
|
|
|
|
|
|
def oc2ud(oc_tag: str) -> Tuple[str, Dict[str, str]]:
|
|
gram_map = {
|
|
"_POS": {
|
|
"ADJF": "ADJ",
|
|
"ADJS": "ADJ",
|
|
"ADVB": "ADV",
|
|
"Apro": "DET",
|
|
"COMP": "ADJ", # Can also be an ADV - unchangeable
|
|
"CONJ": "CCONJ", # Can also be a SCONJ - both unchangeable ones
|
|
"GRND": "VERB",
|
|
"INFN": "VERB",
|
|
"INTJ": "INTJ",
|
|
"NOUN": "NOUN",
|
|
"NPRO": "PRON",
|
|
"NUMR": "NUM",
|
|
"NUMB": "NUM",
|
|
"PNCT": "PUNCT",
|
|
"PRCL": "PART",
|
|
"PREP": "ADP",
|
|
"PRTF": "VERB",
|
|
"PRTS": "VERB",
|
|
"VERB": "VERB",
|
|
},
|
|
"Animacy": {"anim": "Anim", "inan": "Inan"},
|
|
"Aspect": {"impf": "Imp", "perf": "Perf"},
|
|
"Case": {
|
|
"ablt": "Ins",
|
|
"accs": "Acc",
|
|
"datv": "Dat",
|
|
"gen1": "Gen",
|
|
"gen2": "Gen",
|
|
"gent": "Gen",
|
|
"loc2": "Loc",
|
|
"loct": "Loc",
|
|
"nomn": "Nom",
|
|
"voct": "Voc",
|
|
},
|
|
"Degree": {"COMP": "Cmp", "Supr": "Sup"},
|
|
"Gender": {"femn": "Fem", "masc": "Masc", "neut": "Neut"},
|
|
"Mood": {"impr": "Imp", "indc": "Ind"},
|
|
"Number": {"plur": "Plur", "sing": "Sing"},
|
|
"NumForm": {"NUMB": "Digit"},
|
|
"Person": {"1per": "1", "2per": "2", "3per": "3", "excl": "2", "incl": "1"},
|
|
"Tense": {"futr": "Fut", "past": "Past", "pres": "Pres"},
|
|
"Variant": {"ADJS": "Brev", "PRTS": "Brev"},
|
|
"VerbForm": {
|
|
"GRND": "Conv",
|
|
"INFN": "Inf",
|
|
"PRTF": "Part",
|
|
"PRTS": "Part",
|
|
"VERB": "Fin",
|
|
},
|
|
"Voice": {"actv": "Act", "pssv": "Pass"},
|
|
"Abbr": {"Abbr": "Yes"},
|
|
}
|
|
pos = "X"
|
|
morphology = dict()
|
|
unmatched = set()
|
|
grams = oc_tag.replace(" ", ",").split(",")
|
|
for gram in grams:
|
|
match = False
|
|
for categ, gmap in sorted(gram_map.items()):
|
|
if gram in gmap:
|
|
match = True
|
|
if categ == "_POS":
|
|
pos = gmap[gram]
|
|
else:
|
|
morphology[categ] = gmap[gram]
|
|
if not match:
|
|
unmatched.add(gram)
|
|
while len(unmatched) > 0:
|
|
gram = unmatched.pop()
|
|
if gram in ("Name", "Patr", "Surn", "Geox", "Orgn"):
|
|
pos = "PROPN"
|
|
elif gram == "Auxt":
|
|
pos = "AUX"
|
|
elif gram == "Pltm":
|
|
morphology["Number"] = "Ptan"
|
|
return pos, morphology
|