spaCy/spacy/tests/pipeline/test_analysis.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

138 lines
4.0 KiB
Python

import spacy.language
from spacy.language import Language
from spacy.pipe_analysis import print_summary, validate_attrs
from spacy.pipe_analysis import get_assigns_for_attr, get_requires_for_attr
from spacy.pipe_analysis import count_pipeline_interdependencies
from mock import Mock
import pytest
def test_component_decorator_assigns():
spacy.language.ENABLE_PIPELINE_ANALYSIS = True
@Language.component("c1", assigns=["token.tag", "doc.tensor"])
def test_component1(doc):
return doc
@Language.component(
"c2", requires=["token.tag", "token.pos"], assigns=["token.lemma", "doc.tensor"]
)
def test_component2(doc):
return doc
@Language.component(
"c3", requires=["token.lemma"], assigns=["token._.custom_lemma"]
)
def test_component3(doc):
return doc
assert Language.has_factory("c1")
assert Language.has_factory("c2")
assert Language.has_factory("c3")
nlp = Language()
nlp.add_pipe("c1")
with pytest.warns(UserWarning):
nlp.add_pipe("c2")
nlp.add_pipe("c3")
assert get_assigns_for_attr(nlp, "doc.tensor") == ["c1", "c2"]
nlp.add_pipe("c1", name="c4")
test_component4_meta = nlp.get_pipe_meta("c1")
assert test_component4_meta.factory == "c1"
assert nlp.pipe_names == ["c1", "c2", "c3", "c4"]
assert not Language.has_factory("c4")
assert nlp.pipe_factories["c1"] == "c1"
assert nlp.pipe_factories["c4"] == "c1"
assert get_assigns_for_attr(nlp, "doc.tensor") == ["c1", "c2", "c4"]
assert get_requires_for_attr(nlp, "token.pos") == ["c2"]
assert print_summary(nlp, no_print=True)
assert nlp("hello world")
def test_component_factories_class_func():
"""Test that class components can implement a from_nlp classmethod that
gives them access to the nlp object and config via the factory."""
class TestComponent5:
def __call__(self, doc):
return doc
mock = Mock()
mock.return_value = TestComponent5()
def test_componen5_factory(nlp, foo: str = "bar", name="c5"):
return mock(nlp, foo=foo)
Language.factory("c5", func=test_componen5_factory)
assert Language.has_factory("c5")
nlp = Language()
nlp.add_pipe("c5", config={"foo": "bar"})
assert nlp("hello world")
mock.assert_called_once_with(nlp, foo="bar")
def test_analysis_validate_attrs_valid():
attrs = ["doc.sents", "doc.ents", "token.tag", "token._.xyz", "span._.xyz"]
assert validate_attrs(attrs)
for attr in attrs:
assert validate_attrs([attr])
with pytest.raises(ValueError):
validate_attrs(["doc.sents", "doc.xyz"])
@pytest.mark.parametrize(
"attr",
[
"doc",
"doc_ents",
"doc.xyz",
"token.xyz",
"token.tag_",
"token.tag.xyz",
"token._.xyz.abc",
"span.label",
],
)
def test_analysis_validate_attrs_invalid(attr):
with pytest.raises(ValueError):
validate_attrs([attr])
def test_analysis_validate_attrs_remove_pipe():
"""Test that attributes are validated correctly on remove."""
spacy.language.ENABLE_PIPELINE_ANALYSIS = True
@Language.component("pipe_analysis_c6", assigns=["token.tag"])
def c1(doc):
return doc
@Language.component("pipe_analysis_c7", requires=["token.pos"])
def c2(doc):
return doc
nlp = Language()
nlp.add_pipe("pipe_analysis_c6")
with pytest.warns(UserWarning):
nlp.add_pipe("pipe_analysis_c7")
with pytest.warns(None) as record:
nlp.remove_pipe("pipe_analysis_c7")
assert not record.list
def test_pipe_interdependencies():
prefix = "test_pipe_interdependencies"
@Language.component(f"{prefix}.fancifier", assigns=("doc._.fancy",))
def fancifier(doc):
return doc
@Language.component(f"{prefix}.needer", requires=("doc._.fancy",))
def needer(doc):
return doc
nlp = Language()
nlp.add_pipe(f"{prefix}.fancifier")
nlp.add_pipe(f"{prefix}.needer")
counts = count_pipeline_interdependencies(nlp)
assert counts == [1, 0]