spaCy/spacy/syntax/nonproj.pyx
adrianeboyd 392c4880d9 Restructure Example with merged sents as default (#4632)
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Restructure Example with merged sents as default

An `Example` now includes a single `TokenAnnotation` that includes all
the information from one `Doc` (=JSON `paragraph`). If required, the
individual sentences can be returned as a list of examples with
`Example.split_sents()` with no raw text available.

* Input/output a single `Example.token_annotation`

* Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries

* Replace `Example.merge_sents()` with `Example.split_sents()`

* Modify components to use a single `Example.token_annotation`

  * Pipeline components
  * conllu2json converter

* Rework/rename `add_token_annotation()` and `add_doc_annotation()` to
`set_token_annotation()` and `set_doc_annotation()`, functions that set
rather then appending/extending.

* Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse`

* Add getters to `TokenAnnotation` to supply default values when a given
attribute is not available

* `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only
applied on single examples, so the `GoldParse` is returned saved in the
provided `Example` rather than creating a new `Example` with no other
internal annotation

* Update tests for API changes and `merge_sents()` vs. `split_sents()`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Fix make_orth_variants()

Fix bug in make_orth_variants() related to conversion from multiple to
one TokenAnnotation per Example.

* Add basic test for make_orth_variants()

* Replace try/except with conditionals

* Replace default morph value with set
2019-11-25 16:03:28 +01:00

226 lines
8.1 KiB
Cython

# coding: utf-8
# cython: profile=True
# cython: infer_types=True
"""Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005
for doing pseudo-projective parsing implementation uses the HEAD decoration
scheme.
"""
from __future__ import unicode_literals
from copy import copy
from spacy.gold import Example
from ..tokens.doc cimport Doc, set_children_from_heads
from ..errors import Errors
DELIMITER = '||'
def ancestors(tokenid, heads):
# Returns all words going from the word up the path to the root. The path
# to root cannot be longer than the number of words in the sentence. This
# function ends after at most len(heads) steps, because it would otherwise
# loop indefinitely on cycles.
head = tokenid
cnt = 0
while heads[head] != head and cnt < len(heads):
head = heads[head]
cnt += 1
yield head
if head is None:
break
def contains_cycle(heads):
# in an acyclic tree, the path from each word following the head relation
# upwards always ends at the root node
for tokenid in range(len(heads)):
seen = set([tokenid])
for ancestor in ancestors(tokenid, heads):
if ancestor in seen:
return seen
seen.add(ancestor)
return None
def is_nonproj_arc(tokenid, heads):
# definition (e.g. Havelka 2007): an arc h -> d, h < d is non-projective
# if there is a token k, h < k < d such that h is not
# an ancestor of k. Same for h -> d, h > d
head = heads[tokenid]
if head == tokenid: # root arcs cannot be non-projective
return False
elif head is None: # unattached tokens cannot be non-projective
return False
start, end = (head+1, tokenid) if head < tokenid else (tokenid+1, head)
for k in range(start, end):
for ancestor in ancestors(k, heads):
if ancestor is None: # for unattached tokens/subtrees
break
elif ancestor == head: # normal case: k dominated by h
break
else: # head not in ancestors: d -> h is non-projective
return True
return False
def is_nonproj_tree(heads):
# a tree is non-projective if at least one arc is non-projective
return any(is_nonproj_arc(word, heads) for word in range(len(heads)))
def decompose(label):
return label.partition(DELIMITER)[::2]
def is_decorated(label):
return DELIMITER in label
def count_decorated_labels(gold_data):
freqs = {}
for example in gold_data:
proj_heads, deco_deps = projectivize(example.token_annotation.heads,
example.token_annotation.deps)
# set the label to ROOT for each root dependent
deco_deps = ['ROOT' if head == i else deco_deps[i]
for i, head in enumerate(proj_heads)]
# count label frequencies
for label in deco_deps:
if is_decorated(label):
freqs[label] = freqs.get(label, 0) + 1
return freqs
def preprocess_training_data(gold_data, label_freq_cutoff=30):
preprocessed = []
freqs = {}
for example in gold_data:
new_example = Example(doc=example.doc)
proj_heads, deco_deps = projectivize(example.token_annotation.heads,
example.token_annotation.deps)
# set the label to ROOT for each root dependent
deco_deps = ['ROOT' if head == i else deco_deps[i]
for i, head in enumerate(proj_heads)]
# count label frequencies
if label_freq_cutoff > 0:
for label in deco_deps:
if is_decorated(label):
freqs[label] = freqs.get(label, 0) + 1
proj_token_dict = example.token_annotation.to_dict()
proj_token_dict["heads"] = proj_heads
proj_token_dict["deps"] = deco_deps
new_example.set_token_annotation(**proj_token_dict)
preprocessed.append(new_example)
if label_freq_cutoff > 0:
return _filter_labels(preprocessed, label_freq_cutoff, freqs)
return preprocessed
def projectivize(heads, labels):
# Use the algorithm by Nivre & Nilsson 2005. Assumes heads to be a proper
# tree, i.e. connected and cycle-free. Returns a new pair (heads, labels)
# which encode a projective and decorated tree.
proj_heads = copy(heads)
smallest_np_arc = _get_smallest_nonproj_arc(proj_heads)
if smallest_np_arc is None: # this sentence is already projective
return proj_heads, copy(labels)
while smallest_np_arc is not None:
_lift(smallest_np_arc, proj_heads)
smallest_np_arc = _get_smallest_nonproj_arc(proj_heads)
deco_labels = _decorate(heads, proj_heads, labels)
return proj_heads, deco_labels
cpdef deprojectivize(Doc doc):
# Reattach arcs with decorated labels (following HEAD scheme). For each
# decorated arc X||Y, search top-down, left-to-right, breadth-first until
# hitting a Y then make this the new head.
for i in range(doc.length):
label = doc.vocab.strings[doc.c[i].dep]
if DELIMITER in label:
new_label, head_label = label.split(DELIMITER)
new_head = _find_new_head(doc[i], head_label)
doc.c[i].head = new_head.i - i
doc.c[i].dep = doc.vocab.strings.add(new_label)
set_children_from_heads(doc.c, doc.length)
return doc
def _decorate(heads, proj_heads, labels):
# uses decoration scheme HEAD from Nivre & Nilsson 2005
if (len(heads) != len(proj_heads)) or (len(proj_heads) != len(labels)):
raise ValueError(Errors.E082.format(n_heads=len(heads),
n_proj_heads=len(proj_heads),
n_labels=len(labels)))
deco_labels = []
for tokenid, head in enumerate(heads):
if head != proj_heads[tokenid]:
deco_labels.append(
'%s%s%s' % (labels[tokenid], DELIMITER, labels[head]))
else:
deco_labels.append(labels[tokenid])
return deco_labels
def _get_smallest_nonproj_arc(heads):
# return the smallest non-proj arc or None
# where size is defined as the distance between dep and head
# and ties are broken left to right
smallest_size = float('inf')
smallest_np_arc = None
for tokenid, head in enumerate(heads):
size = abs(tokenid-head)
if size < smallest_size and is_nonproj_arc(tokenid, heads):
smallest_size = size
smallest_np_arc = tokenid
return smallest_np_arc
def _lift(tokenid, heads):
# reattaches a word to it's grandfather
head = heads[tokenid]
ghead = heads[head]
# attach to ghead if head isn't attached to root else attach to root
heads[tokenid] = ghead if head != ghead else tokenid
def _find_new_head(token, headlabel):
# search through the tree starting from the head of the given token
# returns the id of the first descendant with the given label
# if there is none, return the current head (no change)
queue = [token.head]
while queue:
next_queue = []
for qtoken in queue:
for child in qtoken.children:
if child.is_space:
continue
if child == token:
continue
if child.dep_ == headlabel:
return child
next_queue.append(child)
queue = next_queue
return token.head
def _filter_labels(examples, cutoff, freqs):
# throw away infrequent decorated labels
# can't learn them reliably anyway and keeps label set smaller
filtered = []
for example in examples:
new_example = Example(doc=example.doc)
filtered_labels = []
for label in example.token_annotation.deps:
if is_decorated(label) and freqs.get(label, 0) < cutoff:
filtered_labels.append(decompose(label)[0])
else:
filtered_labels.append(label)
filtered_token_dict = example.token_annotation.to_dict()
filtered_token_dict["deps"] = filtered_labels
new_example.set_token_annotation(**filtered_token_dict)
filtered.append(new_example)
return filtered