mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			260 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, profile=True, binding=True
 | |
| import srsly
 | |
| 
 | |
| from ..tokens.doc cimport Doc
 | |
| 
 | |
| from ..util import create_default_optimizer
 | |
| from ..errors import Errors
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| cdef class Pipe:
 | |
|     """This class is a base class and not instantiated directly. Trainable
 | |
|     pipeline components like the EntityRecognizer or TextCategorizer inherit
 | |
|     from it and it defines the interface that components should follow to
 | |
|     function as trainable components in a spaCy pipeline.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/pipe
 | |
|     """
 | |
| 
 | |
|     def __init__(self, vocab, model, name, **cfg):
 | |
|         """Initialize a pipeline component.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name.
 | |
|         **cfg: Additonal settings and config parameters.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#init
 | |
|         """
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def __call__(self, Doc doc):
 | |
|         """Apply the pipe to one document. The document is modified in place,
 | |
|         and returned. This usually happens under the hood when the nlp object
 | |
|         is called on a text and all components are applied to the Doc.
 | |
| 
 | |
|         docs (Doc): The Doc to preocess.
 | |
|         RETURNS (Doc): The processed Doc.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#call
 | |
|         """
 | |
|         scores = self.predict([doc])
 | |
|         self.set_annotations([doc], scores)
 | |
|         return doc
 | |
| 
 | |
|     def pipe(self, stream, *, batch_size=128):
 | |
|         """Apply the pipe to a stream of documents. This usually happens under
 | |
|         the hood when the nlp object is called on a text and all components are
 | |
|         applied to the Doc.
 | |
| 
 | |
|         stream (Iterable[Doc]): A stream of documents.
 | |
|         batch_size (int): The number of documents to buffer.
 | |
|         YIELDS (Doc): Processed documents in order.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#pipe
 | |
|         """
 | |
|         for docs in util.minibatch(stream, size=batch_size):
 | |
|             scores = self.predict(docs)
 | |
|             self.set_annotations(docs, scores)
 | |
|             yield from docs
 | |
| 
 | |
|     def predict(self, docs):
 | |
|         """Apply the pipeline's model to a batch of docs, without modifying them.
 | |
|         Returns a single tensor for a batch of documents.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to predict.
 | |
|         RETURNS: Vector representations for each token in the documents.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#predict
 | |
|         """
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def set_annotations(self, docs, scores):
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         scores: The scores to assign.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#set_annotations
 | |
|         """
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def rehearse(self, examples, *, sgd=None, losses=None, **config):
 | |
|         """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | |
|         teach the current model to make predictions similar to an initial model,
 | |
|         to try to address the "catastrophic forgetting" problem. This feature is
 | |
|         experimental.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#rehearse
 | |
|         """
 | |
|         pass
 | |
| 
 | |
|     def get_loss(self, examples, scores):
 | |
|         """Find the loss and gradient of loss for the batch of documents and
 | |
|         their predicted scores.
 | |
| 
 | |
|         examples (Iterable[Examples]): The batch of examples.
 | |
|         scores: Scores representing the model's predictions.
 | |
|         RETUTNRS (Tuple[float, float]): The loss and the gradient.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#get_loss
 | |
|         """
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         """Add an output label, to be predicted by the model. It's possible to
 | |
|         extend pretrained models with new labels, but care should be taken to
 | |
|         avoid the "catastrophic forgetting" problem.
 | |
| 
 | |
|         label (str): The label to add.
 | |
|         RETURNS (int): 0 if label is already present, otherwise 1.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#add_label
 | |
|         """
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def create_optimizer(self):
 | |
|         """Create an optimizer for the pipeline component.
 | |
| 
 | |
|         RETURNS (thinc.api.Optimizer): The optimizer.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#create_optimizer
 | |
|         """
 | |
|         return create_default_optimizer()
 | |
| 
 | |
|     def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
 | |
|         """Initialize the pipe for training, using data examples if available.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Optional function that
 | |
|             returns gold-standard Example objects.
 | |
|         pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
 | |
|             components that this component is part of. Corresponds to
 | |
|             nlp.pipeline.
 | |
|         sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
 | |
|             create_optimizer if it doesn't exist.
 | |
|         RETURNS (thinc.api.Optimizer): The optimizer.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#begin_training
 | |
|         """
 | |
|         self.model.initialize()
 | |
|         if sgd is None:
 | |
|             sgd = self.create_optimizer()
 | |
|         return sgd
 | |
| 
 | |
|     def set_output(self, nO):
 | |
|         if self.model.has_dim("nO") is not False:
 | |
|             self.model.set_dim("nO", nO)
 | |
|         if self.model.has_ref("output_layer"):
 | |
|             self.model.get_ref("output_layer").set_dim("nO", nO)
 | |
| 
 | |
|     def use_params(self, params):
 | |
|         """Modify the pipe's model, to use the given parameter values. At the
 | |
|         end of the context, the original parameters are restored.
 | |
| 
 | |
|         params (dict): The parameter values to use in the model.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#use_params
 | |
|         """
 | |
|         with self.model.use_params(params):
 | |
|             yield
 | |
| 
 | |
|     def score(self, examples, **kwargs):
 | |
|         """Score a batch of examples.
 | |
| 
 | |
|         examples (Iterable[Example]): The examples to score.
 | |
|         RETURNS (Dict[str, Any]): The scores.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#score
 | |
|         """
 | |
|         return {}
 | |
| 
 | |
|     def to_bytes(self, *, exclude=tuple()):
 | |
|         """Serialize the pipe to a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#to_bytes
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | |
|         serialize["model"] = self.model.to_bytes
 | |
|         if hasattr(self, "vocab"):
 | |
|             serialize["vocab"] = self.vocab.to_bytes
 | |
|         return util.to_bytes(serialize, exclude)
 | |
| 
 | |
|     def from_bytes(self, bytes_data, *, exclude=tuple()):
 | |
|         """Load the pipe from a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Pipe): The loaded object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#from_bytes
 | |
|         """
 | |
| 
 | |
|         def load_model(b):
 | |
|             try:
 | |
|                 self.model.from_bytes(b)
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {}
 | |
|         if hasattr(self, "vocab"):
 | |
|             deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
 | |
|         deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_bytes(bytes_data, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
|     def to_disk(self, path, *, exclude=tuple()):
 | |
|         """Serialize the pipe to disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#to_disk
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
 | |
|         serialize["vocab"] = lambda p: self.vocab.to_disk(p)
 | |
|         serialize["model"] = lambda p: self.model.to_disk(p)
 | |
|         util.to_disk(path, serialize, exclude)
 | |
| 
 | |
|     def from_disk(self, path, *, exclude=tuple()):
 | |
|         """Load the pipe from disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Pipe): The loaded object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/pipe#from_disk
 | |
|         """
 | |
| 
 | |
|         def load_model(p):
 | |
|             try:
 | |
|                 self.model.from_bytes(p.open("rb").read())
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {}
 | |
|         deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
 | |
|         deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_disk(path, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
| 
 | |
| def deserialize_config(path):
 | |
|     if path.exists():
 | |
|         return srsly.read_json(path)
 | |
|     else:
 | |
|         return {}
 |