mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			206 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import List, Iterable, Optional, Dict, Tuple, Callable
 | |
| from thinc.types import Floats2d
 | |
| from thinc.api import SequenceCategoricalCrossentropy, set_dropout_rate, Model
 | |
| from thinc.api import Optimizer, Config
 | |
| from thinc.util import to_numpy
 | |
| 
 | |
| from ..errors import Errors
 | |
| from ..gold import Example, spans_from_biluo_tags, iob_to_biluo, biluo_to_iob
 | |
| from ..tokens import Doc
 | |
| from ..language import Language
 | |
| from ..vocab import Vocab
 | |
| from ..scorer import Scorer
 | |
| from .pipe import Pipe
 | |
| 
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.BILUOTagger.v1"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 128
 | |
| depth = 4
 | |
| embed_size = 7000
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| """
 | |
| DEFAULT_SIMPLE_NER_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "simple_ner",
 | |
|     assigns=["doc.ents"],
 | |
|     default_config={"labels": [], "model": DEFAULT_SIMPLE_NER_MODEL},
 | |
|     scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
 | |
|     default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
 | |
| )
 | |
| def make_simple_ner(
 | |
|     nlp: Language, name: str, model: Model, labels: Iterable[str]
 | |
| ) -> "SimpleNER":
 | |
|     return SimpleNER(nlp.vocab, model, name, labels=labels)
 | |
| 
 | |
| 
 | |
| class SimpleNER(Pipe):
 | |
|     """Named entity recognition with a tagging model. The model should include
 | |
|     validity constraints to ensure that only valid tag sequences are returned."""
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "simple_ner",
 | |
|         *,
 | |
|         labels: Iterable[str],
 | |
|     ) -> None:
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self.cfg = {"labels": []}
 | |
|         for label in labels:
 | |
|             self.add_label(label)
 | |
|         self.loss_func = SequenceCategoricalCrossentropy(
 | |
|             names=self.get_tag_names(), normalize=True, missing_value=None
 | |
|         )
 | |
|         assert self.model is not None
 | |
| 
 | |
|     @property
 | |
|     def is_biluo(self) -> bool:
 | |
|         return self.model.name.startswith("biluo")
 | |
| 
 | |
|     @property
 | |
|     def labels(self) -> Tuple[str]:
 | |
|         return tuple(self.cfg["labels"])
 | |
| 
 | |
|     def add_label(self, label: str) -> None:
 | |
|         """Add a new label to the pipe.
 | |
|         label (str): The label to add.
 | |
|         DOCS: https://spacy.io/api/simplener#add_label
 | |
|         """
 | |
|         if not isinstance(label, str):
 | |
|             raise ValueError(Errors.E187)
 | |
|         if label not in self.labels:
 | |
|             self.cfg["labels"].append(label)
 | |
|             self.vocab.strings.add(label)
 | |
| 
 | |
|     def get_tag_names(self) -> List[str]:
 | |
|         if self.is_biluo:
 | |
|             return (
 | |
|                 [f"B-{label}" for label in self.labels]
 | |
|                 + [f"I-{label}" for label in self.labels]
 | |
|                 + [f"L-{label}" for label in self.labels]
 | |
|                 + [f"U-{label}" for label in self.labels]
 | |
|                 + ["O"]
 | |
|             )
 | |
|         else:
 | |
|             return (
 | |
|                 [f"B-{label}" for label in self.labels]
 | |
|                 + [f"I-{label}" for label in self.labels]
 | |
|                 + ["O"]
 | |
|             )
 | |
| 
 | |
|     def predict(self, docs: List[Doc]) -> List[Floats2d]:
 | |
|         scores = self.model.predict(docs)
 | |
|         return scores
 | |
| 
 | |
|     def set_annotations(self, docs: List[Doc], scores: List[Floats2d]) -> None:
 | |
|         """Set entities on a batch of documents from a batch of scores."""
 | |
|         tag_names = self.get_tag_names()
 | |
|         for i, doc in enumerate(docs):
 | |
|             actions = to_numpy(scores[i].argmax(axis=1))
 | |
|             tags = [tag_names[actions[j]] for j in range(len(doc))]
 | |
|             if not self.is_biluo:
 | |
|                 tags = iob_to_biluo(tags)
 | |
|             doc.ents = spans_from_biluo_tags(doc, tags)
 | |
| 
 | |
|     def update(
 | |
|         self,
 | |
|         examples: List[Example],
 | |
|         *,
 | |
|         set_annotations: bool = False,
 | |
|         drop: float = 0.0,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> Dict[str, float]:
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault("ner", 0.0)
 | |
|         if not any(_has_ner(eg) for eg in examples):
 | |
|             return losses
 | |
|         docs = [eg.predicted for eg in examples]
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         scores, bp_scores = self.model.begin_update(docs)
 | |
|         loss, d_scores = self.get_loss(examples, scores)
 | |
|         bp_scores(d_scores)
 | |
|         if set_annotations:
 | |
|             self.set_annotations(docs, scores)
 | |
|         if sgd is not None:
 | |
|             self.model.finish_update(sgd)
 | |
|         losses["ner"] += loss
 | |
|         return losses
 | |
| 
 | |
|     def get_loss(self, examples: List[Example], scores) -> Tuple[List[Floats2d], float]:
 | |
|         truths = []
 | |
|         for eg in examples:
 | |
|             tags = eg.get_aligned_ner()
 | |
|             gold_tags = [(tag if tag != "-" else None) for tag in tags]
 | |
|             if not self.is_biluo:
 | |
|                 gold_tags = biluo_to_iob(gold_tags)
 | |
|             truths.append(gold_tags)
 | |
|         for i in range(len(scores)):
 | |
|             if len(scores[i]) != len(truths[i]):
 | |
|                 raise ValueError(
 | |
|                     f"Mismatched output and gold sizes.\n"
 | |
|                     f"Output: {len(scores[i])}, gold: {len(truths[i])}."
 | |
|                     f"Input: {len(examples[i].doc)}"
 | |
|                 )
 | |
|         d_scores, loss = self.loss_func(scores, truths)
 | |
|         return loss, d_scores
 | |
| 
 | |
|     def begin_training(
 | |
|         self,
 | |
|         get_examples: Callable,
 | |
|         pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|     ):
 | |
|         if not hasattr(get_examples, "__call__"):
 | |
|             gold_tuples = get_examples
 | |
|             get_examples = lambda: gold_tuples
 | |
|         for label in _get_labels(get_examples()):
 | |
|             self.add_label(label)
 | |
|         labels = self.labels
 | |
|         n_actions = self.model.attrs["get_num_actions"](len(labels))
 | |
|         self.model.set_dim("nO", n_actions)
 | |
|         self.model.initialize()
 | |
|         if pipeline is not None:
 | |
|             self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg)
 | |
|         self.loss_func = SequenceCategoricalCrossentropy(
 | |
|             names=self.get_tag_names(), normalize=True, missing_value=None
 | |
|         )
 | |
|         return sgd
 | |
| 
 | |
|     def init_multitask_objectives(self, *args, **kwargs):
 | |
|         pass
 | |
| 
 | |
|     def score(self, examples, **kwargs):
 | |
|         return Scorer.score_spans(examples, "ents", **kwargs)
 | |
| 
 | |
| 
 | |
| def _has_ner(example: Example) -> bool:
 | |
|     for ner_tag in example.get_aligned_ner():
 | |
|         if ner_tag != "-" and ner_tag is not None:
 | |
|             return True
 | |
|     else:
 | |
|         return False
 | |
| 
 | |
| 
 | |
| def _get_labels(examples: List[Example]) -> List[str]:
 | |
|     labels = set()
 | |
|     for eg in examples:
 | |
|         for ner_tag in eg.get_aligned("ENT_TYPE", as_string=True):
 | |
|             if ner_tag != "O" and ner_tag != "-":
 | |
|                 labels.add(ner_tag)
 | |
|     return list(sorted(labels))
 |