mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 13:41:21 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			160 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > TOP-LEVEL > SPACY
 | |
| 
 | |
| +h(3, "spacy.load") spacy.load
 | |
|     +tag function
 | |
|     +tag-model
 | |
| 
 | |
| p
 | |
|     |  Load a model via its #[+a("/usage/models#usage") shortcut link],
 | |
|     |  the name of an installed
 | |
|     |  #[+a("/usage/training#models-generating") model package], a unicode
 | |
|     |  path or a #[code Path]-like object. spaCy will try resolving the load
 | |
|     |  argument in this order. If a model is loaded from a shortcut link or
 | |
|     |  package name, spaCy will assume it's a Python package and import it and
 | |
|     |  call the model's own #[code load()] method. If a model is loaded from a
 | |
|     |  path, spaCy will assume it's a data directory, read the language and
 | |
|     |  pipeline settings off the meta.json and initialise the #[code Language]
 | |
|     |  class. The data will be loaded in via
 | |
|     |  #[+api("language#from_disk") #[code Language.from_disk()]].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     nlp = spacy.load('en') # shortcut link
 | |
|     nlp = spacy.load('en_core_web_sm') # package
 | |
|     nlp = spacy.load('/path/to/en') # unicode path
 | |
|     nlp = spacy.load(Path('/path/to/en')) # pathlib Path
 | |
| 
 | |
|     nlp = spacy.load('en', disable=['parser', 'tagger'])
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code name]
 | |
|         +cell unicode or #[code Path]
 | |
|         +cell Model to load, i.e. shortcut link, package name or path.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code disable]
 | |
|         +cell list
 | |
|         +cell
 | |
|             |  Names of pipeline components to
 | |
|             |  #[+a("/usage/processing-pipelines#disabling") disable].
 | |
| 
 | |
|     +row("foot")
 | |
|         +cell returns
 | |
|         +cell #[code Language]
 | |
|         +cell A #[code Language] object with the loaded model.
 | |
| 
 | |
| p
 | |
|     |  Essentially, #[code spacy.load()] is a convenience wrapper that reads
 | |
|     |  the language ID and pipeline components from a model's #[code meta.json],
 | |
|     |  initialises the #[code Language] class, loads in the model data and
 | |
|     |  returns it.
 | |
| 
 | |
| +code("Abstract example").
 | |
|     cls = util.get_lang_class(lang)         #  get language for ID, e.g. 'en'
 | |
|     nlp = cls()                             #  initialise the language
 | |
|     for name in pipeline:
 | |
|         component = nlp.create_pipe(name)   #  create each pipeline component
 | |
|         nlp.add_pipe(component)             #  add component to pipeline
 | |
|     nlp.from_disk(model_data_path)          #  load in model data
 | |
| 
 | |
| +infobox("Changed in v2.0", "⚠️")
 | |
|     |  As of spaCy 2.0, the #[code path] keyword argument is deprecated. spaCy
 | |
|     |  will also raise an error if no model could be loaded and never just
 | |
|     |  return an empty #[code Language] object. If you need a blank language,
 | |
|     |  you can use the new function #[+api("spacy#blank") #[code spacy.blank()]]
 | |
|     |  or import the class explicitly, e.g.
 | |
|     |  #[code from spacy.lang.en import English].
 | |
| 
 | |
|     +code-wrapper
 | |
|         +code-new nlp = spacy.load('/model')
 | |
|         +code-old nlp = spacy.load('en', path='/model')
 | |
| 
 | |
| +h(3, "spacy.blank") spacy.blank
 | |
|     +tag function
 | |
|     +tag-new(2)
 | |
| 
 | |
| p
 | |
|     |  Create a blank model of a given language class. This function is the
 | |
|     |  twin of #[code spacy.load()].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     nlp_en = spacy.blank('en')
 | |
|     nlp_de = spacy.blank('de')
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code name]
 | |
|         +cell unicode
 | |
|         +cell
 | |
|             |  #[+a("https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes") ISO code]
 | |
|             |  of the language class to load.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code disable]
 | |
|         +cell list
 | |
|         +cell
 | |
|             |  Names of pipeline components to
 | |
|             |  #[+a("/usage/processing-pipelines#disabling") disable].
 | |
| 
 | |
|     +row("foot")
 | |
|         +cell returns
 | |
|         +cell #[code Language]
 | |
|         +cell An empty #[code Language] object of the appropriate subclass.
 | |
| 
 | |
| 
 | |
| +h(4, "spacy.info") spacy.info
 | |
|     +tag function
 | |
| 
 | |
| p
 | |
|     |  The same as the #[+api("cli#info") #[code info] command]. Pretty-print
 | |
|     |  information about your installation, models and local setup from within
 | |
|     |  spaCy. To get the model meta data as a dictionary instead, you can
 | |
|     |  use the #[code meta] attribute on your #[code nlp] object with a
 | |
|     |  loaded model, e.g. #[code nlp.meta].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     spacy.info()
 | |
|     spacy.info('en')
 | |
|     spacy.info('de', markdown=True)
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code model]
 | |
|         +cell unicode
 | |
|         +cell A model, i.e. shortcut link, package name or path (optional).
 | |
| 
 | |
|     +row
 | |
|         +cell #[code markdown]
 | |
|         +cell bool
 | |
|         +cell Print information as Markdown.
 | |
| 
 | |
| 
 | |
| +h(3, "spacy.explain") spacy.explain
 | |
|     +tag function
 | |
| 
 | |
| p
 | |
|     |  Get a description for a given POS tag, dependency label or entity type.
 | |
|     |  For a list of available terms, see
 | |
|     |  #[+src(gh("spacy", "spacy/glossary.py")) #[code glossary.py]].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     spacy.explain(u'NORP')
 | |
|     # Nationalities or religious or political groups
 | |
| 
 | |
|     doc = nlp(u'Hello world')
 | |
|     for word in doc:
 | |
|         print(word.text, word.tag_, spacy.explain(word.tag_))
 | |
|     # Hello UH interjection
 | |
|     # world NN noun, singular or mass
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code term]
 | |
|         +cell unicode
 | |
|         +cell Term to explain.
 | |
| 
 | |
|     +row("foot")
 | |
|         +cell returns
 | |
|         +cell unicode
 | |
|         +cell The explanation, or #[code None] if not found in the glossary.
 |