spaCy/spacy/cli/evaluate.py
2020-08-14 14:59:54 +02:00

191 lines
6.3 KiB
Python

from typing import Optional, List, Dict
from wasabi import Printer
from pathlib import Path
import re
import srsly
from thinc.api import require_gpu, fix_random_seed
from ..gold import Corpus
from ..tokens import Doc
from ._util import app, Arg, Opt
from ..scorer import Scorer
from .. import util
from .. import displacy
@app.command("evaluate")
def evaluate_cli(
# fmt: off
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
# fmt: on
):
"""
Evaluate a model. Expects a loadable spaCy model and evaluation data in the
binary .spacy format. The --gold-preproc option sets up the evaluation
examples with gold-standard sentences and tokens for the predictions. Gold
preprocessing helps the annotations align to the tokenization, and may
result in sequences of more consistent length. However, it may reduce
runtime accuracy due to train/test skew. To render a sample of dependency
parses in a HTML file, set as output directory as the displacy_path argument.
"""
evaluate(
model,
data_path,
output=output,
use_gpu=use_gpu,
gold_preproc=gold_preproc,
displacy_path=displacy_path,
displacy_limit=displacy_limit,
silent=False,
)
def evaluate(
model: str,
data_path: Path,
output: Optional[Path] = None,
use_gpu: int = -1,
gold_preproc: bool = False,
displacy_path: Optional[Path] = None,
displacy_limit: int = 25,
silent: bool = True,
) -> Scorer:
msg = Printer(no_print=silent, pretty=not silent)
fix_random_seed()
if use_gpu >= 0:
require_gpu(use_gpu)
data_path = util.ensure_path(data_path)
output_path = util.ensure_path(output)
displacy_path = util.ensure_path(displacy_path)
if not data_path.exists():
msg.fail("Evaluation data not found", data_path, exits=1)
if displacy_path and not displacy_path.exists():
msg.fail("Visualization output directory not found", displacy_path, exits=1)
corpus = Corpus(data_path, gold_preproc=gold_preproc)
nlp = util.load_model(model)
dev_dataset = list(corpus(nlp))
scores = nlp.evaluate(dev_dataset, verbose=False)
metrics = {
"TOK": "token_acc",
"TAG": "tag_acc",
"POS": "pos_acc",
"MORPH": "morph_acc",
"LEMMA": "lemma_acc",
"UAS": "dep_uas",
"LAS": "dep_las",
"NER P": "ents_p",
"NER R": "ents_r",
"NER F": "ents_f",
"TEXTCAT": "cats_score",
"SENT P": "sents_p",
"SENT R": "sents_r",
"SENT F": "sents_f",
"SPEED": "speed",
}
results = {}
for metric, key in metrics.items():
if key in scores:
if key == "cats_score":
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
if key == "speed":
results[metric] = f"{scores[key]:.0f}"
else:
results[metric] = f"{scores[key]*100:.2f}"
data = {re.sub(r"[\s/]", "_", k.lower()): v for k, v in results.items()}
msg.table(results, title="Results")
if "ents_per_type" in scores:
if scores["ents_per_type"]:
print_ents_per_type(msg, scores["ents_per_type"])
if "cats_f_per_type" in scores:
if scores["cats_f_per_type"]:
print_textcats_f_per_cat(msg, scores["cats_f_per_type"])
if "cats_auc_per_type" in scores:
if scores["cats_auc_per_type"]:
print_textcats_auc_per_cat(msg, scores["cats_auc_per_type"])
if displacy_path:
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
docs = [ex.predicted for ex in dev_dataset]
render_deps = "parser" in factory_names
render_ents = "ner" in factory_names
render_parses(
docs,
displacy_path,
model_name=model,
limit=displacy_limit,
deps=render_deps,
ents=render_ents,
)
msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
if output_path is not None:
srsly.write_json(output_path, data)
msg.good(f"Saved results to {output_path}")
return data
def render_parses(
docs: List[Doc],
output_path: Path,
model_name: str = "",
limit: int = 250,
deps: bool = True,
ents: bool = True,
):
docs[0].user_data["title"] = model_name
if ents:
html = displacy.render(docs[:limit], style="ent", page=True)
with (output_path / "entities.html").open("w", encoding="utf8") as file_:
file_.write(html)
if deps:
html = displacy.render(
docs[:limit], style="dep", page=True, options={"compact": True}
)
with (output_path / "parses.html").open("w", encoding="utf8") as file_:
file_.write(html)
def print_ents_per_type(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None:
data = [
(k, f"{v['p']*100:.2f}", f"{v['r']*100:.2f}", f"{v['f']*100:.2f}")
for k, v in scores.items()
]
msg.table(
data,
header=("", "P", "R", "F"),
aligns=("l", "r", "r", "r"),
title="NER (per type)",
)
def print_textcats_f_per_cat(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None:
data = [
(k, f"{v['p']*100:.2f}", f"{v['r']*100:.2f}", f"{v['f']*100:.2f}")
for k, v in scores.items()
]
msg.table(
data,
header=("", "P", "R", "F"),
aligns=("l", "r", "r", "r"),
title="Textcat F (per label)",
)
def print_textcats_auc_per_cat(
msg: Printer, scores: Dict[str, Dict[str, float]]
) -> None:
msg.table(
[(k, f"{v:.2f}") for k, v in scores.items()],
header=("", "ROC AUC"),
aligns=("l", "r"),
title="Textcat ROC AUC (per label)",
)