spaCy/spacy/kb/candidate.pyx
Basile Dura b0228d8ea6
ci: add cython linter (#12694)
* chore: add cython-linter dev dependency

* fix: lexeme.pyx

* fix: morphology.pxd

* fix: tokenizer.pxd

* fix: vocab.pxd

* fix: morphology.pxd (line length)

* ci: add cython-lint

* ci: fix cython-lint call

* Fix kb/candidate.pyx.

* Fix kb/kb.pyx.

* Fix kb/kb_in_memory.pyx.

* Fix kb.

* Fix training/ partially.

* Fix training/. Ignore trailing whitespaces and too long lines.

* Fix ml/.

* Fix matcher/.

* Fix pipeline/.

* Fix tokens/.

* Fix build errors. Fix vocab.pyx.

* Fix cython-lint install and run.

* Fix lexeme.pyx, parts_of_speech.pxd, vectors.pyx. Temporarily disable cython-lint execution.

* Fix attrs.pyx, lexeme.pyx, symbols.pxd, isort issues.

* Make cython-lint install conditional. Fix tokenizer.pyx.

* Fix remaining files. Reenable cython-lint check.

* Readded parentheses.

* Fix test_build_dependencies().

* Add explanatory comment to cython-lint execution.

---------

Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
2023-07-19 12:03:31 +02:00

99 lines
3.2 KiB
Cython

# cython: infer_types=True, profile=True
from .kb_in_memory cimport InMemoryLookupKB
from ..errors import Errors
cdef class Candidate:
"""A `Candidate` object refers to a textual mention that may or may not be resolved
to a specific entity from a Knowledge Base. This will be used as input for the entity linking
algorithm which will disambiguate the various candidates to the correct one.
Each candidate, which represents a possible link between one textual mention and one entity in the knowledge base,
is assigned a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate-init
"""
def __init__(self):
# Make sure abstract Candidate is not instantiated.
if self.__class__ == Candidate:
raise TypeError(
Errors.E1046.format(cls_name=self.__class__.__name__)
)
@property
def entity_id(self) -> int:
"""RETURNS (int): Numerical representation of entity ID (if entity ID is numerical, this is just the entity ID,
otherwise the hash of the entity ID string)."""
raise NotImplementedError
@property
def entity_id_(self) -> str:
"""RETURNS (str): String representation of entity ID."""
raise NotImplementedError
@property
def entity_vector(self) -> vector[float]:
"""RETURNS (vector[float]): Entity vector."""
raise NotImplementedError
cdef class InMemoryCandidate(Candidate):
"""Candidate for InMemoryLookupKB."""
def __init__(
self,
kb: InMemoryLookupKB,
entity_hash: int,
alias_hash: int,
entity_vector: vector[float],
prior_prob: float,
entity_freq: float
):
"""
kb (InMemoryLookupKB]): InMemoryLookupKB instance.
entity_id (int): Entity ID as hash that can be looked up with InMemoryKB.vocab.strings.__getitem__().
entity_freq (int): Entity frequency in KB corpus.
entity_vector (List[float]): Entity embedding.
alias_hash (int): Alias hash.
prior_prob (float): Prior probability of entity for this alias. I. e. the probability that, independent of
the context, this alias - which matches one of this entity's aliases - resolves to one this entity.
"""
super().__init__()
self._entity_hash = entity_hash
self._entity_vector = entity_vector
self._prior_prob = prior_prob
self._kb = kb
self._alias_hash = alias_hash
self._entity_freq = entity_freq
@property
def entity_id(self) -> int:
return self._entity_hash
@property
def entity_vector(self) -> vector[float]:
return self._entity_vector
@property
def prior_prob(self) -> float:
"""RETURNS (float): Prior probability that this alias, which matches one of this entity's synonyms, resolves to
this entity."""
return self._prior_prob
@property
def alias(self) -> str:
"""RETURNS (str): Alias."""
return self._kb.vocab.strings[self._alias_hash]
@property
def entity_id_(self) -> str:
return self._kb.vocab.strings[self._entity_hash]
@property
def entity_freq(self) -> float:
"""RETURNS (float): Entity frequency in KB corpus."""
return self._entity_freq