mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-18 13:34:13 +03:00
976 lines
32 KiB
Cython
976 lines
32 KiB
Cython
# cython: infer_types=True
|
||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||
from cython.view cimport array as cvarray
|
||
cimport numpy as np
|
||
np.import_array()
|
||
|
||
import numpy
|
||
from thinc.api import get_array_module
|
||
import warnings
|
||
|
||
from ..typedefs cimport hash_t
|
||
from ..lexeme cimport Lexeme
|
||
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
|
||
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
|
||
from ..attrs cimport IS_TITLE, IS_UPPER, IS_CURRENCY, IS_STOP
|
||
from ..attrs cimport LIKE_URL, LIKE_NUM, LIKE_EMAIL
|
||
from ..symbols cimport conj
|
||
from .morphanalysis cimport MorphAnalysis
|
||
from .doc cimport set_children_from_heads
|
||
|
||
from .. import parts_of_speech
|
||
from ..errors import Errors, Warnings
|
||
from .underscore import Underscore, get_ext_args
|
||
|
||
|
||
cdef class Token:
|
||
"""An individual token – i.e. a word, punctuation symbol, whitespace,
|
||
etc.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token
|
||
"""
|
||
@classmethod
|
||
def set_extension(cls, name, **kwargs):
|
||
"""Define a custom attribute which becomes available as `Token._`.
|
||
|
||
name (str): Name of the attribute to set.
|
||
default: Optional default value of the attribute.
|
||
getter (callable): Optional getter function.
|
||
setter (callable): Optional setter function.
|
||
method (callable): Optional method for method extension.
|
||
force (bool): Force overwriting existing attribute.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#set_extension
|
||
USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
|
||
"""
|
||
if cls.has_extension(name) and not kwargs.get("force", False):
|
||
raise ValueError(Errors.E090.format(name=name, obj="Token"))
|
||
Underscore.token_extensions[name] = get_ext_args(**kwargs)
|
||
|
||
@classmethod
|
||
def get_extension(cls, name):
|
||
"""Look up a previously registered extension by name.
|
||
|
||
name (str): Name of the extension.
|
||
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#get_extension
|
||
"""
|
||
return Underscore.token_extensions.get(name)
|
||
|
||
@classmethod
|
||
def has_extension(cls, name):
|
||
"""Check whether an extension has been registered.
|
||
|
||
name (str): Name of the extension.
|
||
RETURNS (bool): Whether the extension has been registered.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#has_extension
|
||
"""
|
||
return name in Underscore.token_extensions
|
||
|
||
@classmethod
|
||
def remove_extension(cls, name):
|
||
"""Remove a previously registered extension.
|
||
|
||
name (str): Name of the extension.
|
||
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
|
||
removed extension.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#remove_extension
|
||
"""
|
||
if not cls.has_extension(name):
|
||
raise ValueError(Errors.E046.format(name=name))
|
||
return Underscore.token_extensions.pop(name)
|
||
|
||
def __cinit__(self, Vocab vocab, Doc doc, int offset):
|
||
"""Construct a `Token` object.
|
||
|
||
vocab (Vocab): A storage container for lexical types.
|
||
doc (Doc): The parent document.
|
||
offset (int): The index of the token within the document.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#init
|
||
"""
|
||
self.vocab = vocab
|
||
self.doc = doc
|
||
self.c = &self.doc.c[offset]
|
||
self.i = offset
|
||
|
||
def __hash__(self):
|
||
return hash((self.doc, self.i))
|
||
|
||
def __len__(self):
|
||
"""The number of unicode characters in the token, i.e. `token.text`.
|
||
|
||
RETURNS (int): The number of unicode characters in the token.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#len
|
||
"""
|
||
return self.c.lex.length
|
||
|
||
def __unicode__(self):
|
||
return self.text
|
||
|
||
def __bytes__(self):
|
||
return self.text.encode('utf8')
|
||
|
||
def __str__(self):
|
||
return self.__unicode__()
|
||
|
||
def __repr__(self):
|
||
return self.__str__()
|
||
|
||
def __richcmp__(self, Token other, int op):
|
||
# http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
|
||
if other is None:
|
||
if op in (0, 1, 2):
|
||
return False
|
||
else:
|
||
return True
|
||
cdef Doc my_doc = self.doc
|
||
cdef Doc other_doc = other.doc
|
||
my = self.idx
|
||
their = other.idx
|
||
if op == 0:
|
||
return my < their
|
||
elif op == 2:
|
||
if my_doc is other_doc:
|
||
return my == their
|
||
else:
|
||
return False
|
||
elif op == 4:
|
||
return my > their
|
||
elif op == 1:
|
||
return my <= their
|
||
elif op == 3:
|
||
if my_doc is other_doc:
|
||
return my != their
|
||
else:
|
||
return True
|
||
elif op == 5:
|
||
return my >= their
|
||
else:
|
||
raise ValueError(Errors.E041.format(op=op))
|
||
|
||
def __reduce__(self):
|
||
raise NotImplementedError(Errors.E111)
|
||
|
||
@property
|
||
def _(self):
|
||
"""Custom extension attributes registered via `set_extension`."""
|
||
return Underscore(Underscore.token_extensions, self,
|
||
start=self.idx, end=None)
|
||
|
||
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
||
"""Check the value of a boolean flag.
|
||
|
||
flag_id (int): The ID of the flag attribute.
|
||
RETURNS (bool): Whether the flag is set.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#check_flag
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, flag_id)
|
||
|
||
def nbor(self, int i=1):
|
||
"""Get a neighboring token.
|
||
|
||
i (int): The relative position of the token to get. Defaults to 1.
|
||
RETURNS (Token): The token at position `self.doc[self.i+i]`.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#nbor
|
||
"""
|
||
if self.i+i < 0 or (self.i+i >= len(self.doc)):
|
||
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
|
||
return self.doc[self.i+i]
|
||
|
||
def similarity(self, other):
|
||
"""Make a semantic similarity estimate. The default estimate is cosine
|
||
similarity using an average of word vectors.
|
||
|
||
other (object): The object to compare with. By default, accepts `Doc`,
|
||
`Span`, `Token` and `Lexeme` objects.
|
||
RETURNS (float): A scalar similarity score. Higher is more similar.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#similarity
|
||
"""
|
||
if "similarity" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["similarity"](self, other)
|
||
if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"):
|
||
if self.c.lex.orth == getattr(other[0], "orth", None):
|
||
return 1.0
|
||
elif hasattr(other, "orth"):
|
||
if self.c.lex.orth == other.orth:
|
||
return 1.0
|
||
if self.vocab.vectors.n_keys == 0:
|
||
warnings.warn(Warnings.W007.format(obj="Token"))
|
||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||
warnings.warn(Warnings.W008.format(obj="Token"))
|
||
return 0.0
|
||
vector = self.vector
|
||
xp = get_array_module(vector)
|
||
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm))
|
||
|
||
property morph:
|
||
def __get__(self):
|
||
return MorphAnalysis.from_id(self.vocab, self.c.morph)
|
||
|
||
def __set__(self, MorphAnalysis morph):
|
||
# Check that the morph has the same vocab
|
||
if self.vocab != morph.vocab:
|
||
raise ValueError(Errors.E1013)
|
||
self.c.morph = morph.c.key
|
||
|
||
def set_morph(self, features):
|
||
cdef hash_t key
|
||
if features is None:
|
||
self.c.morph = 0
|
||
elif isinstance(features, MorphAnalysis):
|
||
self.morph = features
|
||
else:
|
||
if isinstance(features, int):
|
||
features = self.vocab.strings[features]
|
||
key = self.vocab.morphology.add(features)
|
||
self.c.morph = key
|
||
|
||
@property
|
||
def lex(self):
|
||
"""RETURNS (Lexeme): The underlying lexeme."""
|
||
return self.vocab[self.c.lex.orth]
|
||
|
||
@property
|
||
def lex_id(self):
|
||
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
||
return self.c.lex.id
|
||
|
||
@property
|
||
def rank(self):
|
||
"""RETURNS (int): Sequential ID of the token's lexical type, used to
|
||
index into tables, e.g. for word vectors."""
|
||
return self.c.lex.id
|
||
|
||
@property
|
||
def text(self):
|
||
"""RETURNS (str): The original verbatim text of the token."""
|
||
return self.orth_
|
||
|
||
@property
|
||
def text_with_ws(self):
|
||
"""RETURNS (str): The text content of the span (with trailing
|
||
whitespace).
|
||
"""
|
||
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
|
||
if self.c.spacy:
|
||
return orth + " "
|
||
else:
|
||
return orth
|
||
|
||
@property
|
||
def prob(self):
|
||
"""RETURNS (float): Smoothed log probability estimate of token type."""
|
||
return self.vocab[self.c.lex.orth].prob
|
||
|
||
@property
|
||
def sentiment(self):
|
||
"""RETURNS (float): A scalar value indicating the positivity or
|
||
negativity of the token."""
|
||
if "sentiment" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["sentiment"](self)
|
||
return self.vocab[self.c.lex.orth].sentiment
|
||
|
||
@property
|
||
def lang(self):
|
||
"""RETURNS (uint64): ID of the language of the parent document's
|
||
vocabulary.
|
||
"""
|
||
return self.c.lex.lang
|
||
|
||
@property
|
||
def idx(self):
|
||
"""RETURNS (int): The character offset of the token within the parent
|
||
document.
|
||
"""
|
||
return self.c.idx
|
||
|
||
@property
|
||
def cluster(self):
|
||
"""RETURNS (int): Brown cluster ID."""
|
||
return self.vocab[self.c.lex.orth].cluster
|
||
|
||
@property
|
||
def orth(self):
|
||
"""RETURNS (uint64): ID of the verbatim text content."""
|
||
return self.c.lex.orth
|
||
|
||
@property
|
||
def lower(self):
|
||
"""RETURNS (uint64): ID of the lowercase token text."""
|
||
return self.c.lex.lower
|
||
|
||
@property
|
||
def norm(self):
|
||
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
|
||
the token text. Usually set in the language's tokenizer exceptions
|
||
or norm exceptions.
|
||
"""
|
||
if self.c.norm == 0:
|
||
return self.c.lex.norm
|
||
else:
|
||
return self.c.norm
|
||
|
||
@property
|
||
def shape(self):
|
||
"""RETURNS (uint64): ID of the token's shape, a transform of the
|
||
tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
|
||
"""
|
||
return self.c.lex.shape
|
||
|
||
@property
|
||
def prefix(self):
|
||
"""RETURNS (uint64): ID of a length-N substring from the start of the
|
||
token. Defaults to `N=1`.
|
||
"""
|
||
return self.c.lex.prefix
|
||
|
||
@property
|
||
def suffix(self):
|
||
"""RETURNS (uint64): ID of a length-N substring from the end of the
|
||
token. Defaults to `N=3`.
|
||
"""
|
||
return self.c.lex.suffix
|
||
|
||
property lemma:
|
||
"""RETURNS (uint64): ID of the base form of the word, with no
|
||
inflectional suffixes.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.lemma
|
||
|
||
def __set__(self, attr_t lemma):
|
||
self.c.lemma = lemma
|
||
|
||
property pos:
|
||
"""RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.c.pos
|
||
|
||
def __set__(self, pos):
|
||
self.c.pos = pos
|
||
|
||
property tag:
|
||
"""RETURNS (uint64): ID of fine-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.c.tag
|
||
|
||
def __set__(self, attr_t tag):
|
||
self.c.tag = tag
|
||
|
||
property dep:
|
||
"""RETURNS (uint64): ID of syntactic dependency label."""
|
||
def __get__(self):
|
||
return self.c.dep
|
||
|
||
def __set__(self, attr_t label):
|
||
self.c.dep = label
|
||
|
||
@property
|
||
def has_vector(self):
|
||
"""A boolean value indicating whether a word vector is associated with
|
||
the object.
|
||
|
||
RETURNS (bool): Whether a word vector is associated with the object.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#has_vector
|
||
"""
|
||
if "has_vector" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["has_vector"](self)
|
||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||
return True
|
||
return self.vocab.has_vector(self.c.lex.orth)
|
||
|
||
@property
|
||
def vector(self):
|
||
"""A real-valued meaning representation.
|
||
|
||
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
||
representing the token's semantics.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#vector
|
||
"""
|
||
if "vector" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["vector"](self)
|
||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||
return self.doc.tensor[self.i]
|
||
else:
|
||
return self.vocab.get_vector(self.c.lex.orth)
|
||
|
||
@property
|
||
def vector_norm(self):
|
||
"""The L2 norm of the token's vector representation.
|
||
|
||
RETURNS (float): The L2 norm of the vector representation.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#vector_norm
|
||
"""
|
||
if "vector_norm" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["vector_norm"](self)
|
||
vector = self.vector
|
||
xp = get_array_module(vector)
|
||
total = (vector ** 2).sum()
|
||
return xp.sqrt(total) if total != 0. else 0.
|
||
|
||
@property
|
||
def tensor(self):
|
||
if self.doc.tensor is None:
|
||
return None
|
||
return self.doc.tensor[self.i]
|
||
|
||
@property
|
||
def n_lefts(self):
|
||
"""The number of leftward immediate children of the word, in the
|
||
syntactic dependency parse.
|
||
|
||
RETURNS (int): The number of leftward immediate children of the
|
||
word, in the syntactic dependency parse.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#n_lefts
|
||
"""
|
||
return self.c.l_kids
|
||
|
||
@property
|
||
def n_rights(self):
|
||
"""The number of rightward immediate children of the word, in the
|
||
syntactic dependency parse.
|
||
|
||
RETURNS (int): The number of rightward immediate children of the
|
||
word, in the syntactic dependency parse.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#n_rights
|
||
"""
|
||
return self.c.r_kids
|
||
|
||
@property
|
||
def sent(self):
|
||
"""RETURNS (Span): The sentence span that the token is a part of."""
|
||
if 'sent' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["sent"](self)
|
||
return self.doc[self.i : self.i+1].sent
|
||
|
||
property sent_start:
|
||
def __get__(self):
|
||
"""Deprecated: use Token.is_sent_start instead."""
|
||
# Raising a deprecation warning here causes errors for autocomplete
|
||
# Handle broken backwards compatibility case: doc[0].sent_start
|
||
# was False.
|
||
if self.i == 0:
|
||
return False
|
||
else:
|
||
return self.c.sent_start
|
||
|
||
def __set__(self, value):
|
||
self.is_sent_start = value
|
||
|
||
property is_sent_start:
|
||
"""A boolean value indicating whether the token starts a sentence.
|
||
`None` if unknown. Defaults to `True` for the first token in the `Doc`.
|
||
|
||
RETURNS (bool / None): Whether the token starts a sentence.
|
||
None if unknown.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#is_sent_start
|
||
"""
|
||
def __get__(self):
|
||
if self.c.sent_start == 0:
|
||
return None
|
||
elif self.c.sent_start < 0:
|
||
return False
|
||
else:
|
||
return True
|
||
|
||
def __set__(self, value):
|
||
if self.doc.has_annotation("DEP"):
|
||
raise ValueError(Errors.E043)
|
||
if value is None:
|
||
self.c.sent_start = 0
|
||
elif value is True:
|
||
self.c.sent_start = 1
|
||
elif value is False:
|
||
self.c.sent_start = -1
|
||
else:
|
||
raise ValueError(Errors.E044.format(value=value))
|
||
|
||
property is_sent_end:
|
||
"""A boolean value indicating whether the token ends a sentence.
|
||
`None` if unknown. Defaults to `True` for the last token in the `Doc`.
|
||
|
||
RETURNS (bool / None): Whether the token ends a sentence.
|
||
None if unknown.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#is_sent_end
|
||
"""
|
||
def __get__(self):
|
||
if self.i + 1 == len(self.doc):
|
||
return True
|
||
elif self.doc[self.i+1].is_sent_start == None:
|
||
return None
|
||
elif self.doc[self.i+1].is_sent_start == True:
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def __set__(self, value):
|
||
raise ValueError(Errors.E196)
|
||
|
||
@property
|
||
def lefts(self):
|
||
"""The leftward immediate children of the word, in the syntactic
|
||
dependency parse.
|
||
|
||
YIELDS (Token): A left-child of the token.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#lefts
|
||
"""
|
||
cdef int nr_iter = 0
|
||
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
|
||
while ptr < self.c:
|
||
if ptr + ptr.head == self.c:
|
||
yield self.doc[ptr - (self.c - self.i)]
|
||
ptr += 1
|
||
nr_iter += 1
|
||
# This is ugly, but it's a way to guard out infinite loops
|
||
if nr_iter >= 10000000:
|
||
raise RuntimeError(Errors.E045.format(attr="token.lefts"))
|
||
|
||
@property
|
||
def rights(self):
|
||
"""The rightward immediate children of the word, in the syntactic
|
||
dependency parse.
|
||
|
||
YIELDS (Token): A right-child of the token.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#rights
|
||
"""
|
||
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
|
||
tokens = []
|
||
cdef int nr_iter = 0
|
||
while ptr > self.c:
|
||
if ptr + ptr.head == self.c:
|
||
tokens.append(self.doc[ptr - (self.c - self.i)])
|
||
ptr -= 1
|
||
nr_iter += 1
|
||
if nr_iter >= 10000000:
|
||
raise RuntimeError(Errors.E045.format(attr="token.rights"))
|
||
tokens.reverse()
|
||
for t in tokens:
|
||
yield t
|
||
|
||
@property
|
||
def children(self):
|
||
"""A sequence of the token's immediate syntactic children.
|
||
|
||
YIELDS (Token): A child token such that `child.head==self`.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#children
|
||
"""
|
||
yield from self.lefts
|
||
yield from self.rights
|
||
|
||
@property
|
||
def subtree(self):
|
||
"""A sequence containing the token and all the token's syntactic
|
||
descendants.
|
||
|
||
YIELDS (Token): A descendent token such that
|
||
`self.is_ancestor(descendent) or token == self`.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#subtree
|
||
"""
|
||
for word in self.lefts:
|
||
yield from word.subtree
|
||
yield self
|
||
for word in self.rights:
|
||
yield from word.subtree
|
||
|
||
@property
|
||
def left_edge(self):
|
||
"""The leftmost token of this token's syntactic descendents.
|
||
|
||
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
|
||
"""
|
||
return self.doc[self.c.l_edge]
|
||
|
||
@property
|
||
def right_edge(self):
|
||
"""The rightmost token of this token's syntactic descendents.
|
||
|
||
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
|
||
"""
|
||
return self.doc[self.c.r_edge]
|
||
|
||
@property
|
||
def ancestors(self):
|
||
"""A sequence of this token's syntactic ancestors.
|
||
|
||
YIELDS (Token): A sequence of ancestor tokens such that
|
||
`ancestor.is_ancestor(self)`.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#ancestors
|
||
"""
|
||
cdef const TokenC* head_ptr = self.c
|
||
# Guard against infinite loop, no token can have
|
||
# more ancestors than tokens in the tree.
|
||
cdef int i = 0
|
||
while head_ptr.head != 0 and i < self.doc.length:
|
||
head_ptr += head_ptr.head
|
||
yield self.doc[head_ptr - (self.c - self.i)]
|
||
i += 1
|
||
|
||
def is_ancestor(self, descendant):
|
||
"""Check whether this token is a parent, grandparent, etc. of another
|
||
in the dependency tree.
|
||
|
||
descendant (Token): Another token.
|
||
RETURNS (bool): Whether this token is the ancestor of the descendant.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#is_ancestor
|
||
"""
|
||
if self.doc is not descendant.doc:
|
||
return False
|
||
return any(ancestor.i == self.i for ancestor in descendant.ancestors)
|
||
|
||
property head:
|
||
"""The syntactic parent, or "governor", of this token.
|
||
|
||
RETURNS (Token): The token predicted by the parser to be the head of
|
||
the current token.
|
||
"""
|
||
def __get__(self):
|
||
return self.doc[self.i + self.c.head]
|
||
|
||
def __set__(self, Token new_head):
|
||
# This function sets the head of self to new_head and updates the
|
||
# counters for left/right dependents and left/right corner for the
|
||
# new and the old head
|
||
# Check that token is from the same document
|
||
if self.doc != new_head.doc:
|
||
raise ValueError(Errors.E191)
|
||
# Do nothing if old head is new head
|
||
if self.i + self.c.head == new_head.i:
|
||
return
|
||
# Find the widest l/r_edges of the roots of the two tokens involved
|
||
# to limit the number of tokens for set_children_from_heads
|
||
cdef Token self_root, new_head_root
|
||
self_ancestors = list(self.ancestors)
|
||
new_head_ancestors = list(new_head.ancestors)
|
||
self_root = self_ancestors[-1] if self_ancestors else self
|
||
new_head_root = new_head_ancestors[-1] if new_head_ancestors else new_head
|
||
start = self_root.c.l_edge if self_root.c.l_edge < new_head_root.c.l_edge else new_head_root.c.l_edge
|
||
end = self_root.c.r_edge if self_root.c.r_edge > new_head_root.c.r_edge else new_head_root.c.r_edge
|
||
# Set new head
|
||
self.c.head = new_head.i - self.i
|
||
# Adjust parse properties and sentence starts
|
||
set_children_from_heads(self.doc.c, start, end + 1)
|
||
|
||
@property
|
||
def conjuncts(self):
|
||
"""A sequence of coordinated tokens, including the token itself.
|
||
|
||
RETURNS (tuple): The coordinated tokens.
|
||
|
||
DOCS: https://nightly.spacy.io/api/token#conjuncts
|
||
"""
|
||
cdef Token word, child
|
||
if "conjuncts" in self.doc.user_token_hooks:
|
||
return tuple(self.doc.user_token_hooks["conjuncts"](self))
|
||
start = self
|
||
while start.i != start.head.i:
|
||
if start.dep == conj:
|
||
start = start.head
|
||
else:
|
||
break
|
||
queue = [start]
|
||
output = [start]
|
||
for word in queue:
|
||
for child in word.rights:
|
||
if child.c.dep == conj:
|
||
output.append(child)
|
||
queue.append(child)
|
||
return tuple([w for w in output if w.i != self.i])
|
||
|
||
property ent_type:
|
||
"""RETURNS (uint64): Named entity type."""
|
||
def __get__(self):
|
||
return self.c.ent_type
|
||
|
||
def __set__(self, ent_type):
|
||
self.c.ent_type = ent_type
|
||
|
||
property ent_type_:
|
||
"""RETURNS (str): Named entity type."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_type]
|
||
|
||
def __set__(self, ent_type):
|
||
self.c.ent_type = self.vocab.strings.add(ent_type)
|
||
|
||
@property
|
||
def ent_iob(self):
|
||
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
|
||
is assigned.
|
||
|
||
RETURNS (uint64): IOB code of named entity tag.
|
||
"""
|
||
return self.c.ent_iob
|
||
|
||
@classmethod
|
||
def iob_strings(cls):
|
||
return ("", "I", "O", "B")
|
||
|
||
@property
|
||
def ent_iob_(self):
|
||
"""IOB code of named entity tag. "B" means the token begins an entity,
|
||
"I" means it is inside an entity, "O" means it is outside an entity,
|
||
and "" means no entity tag is set. "B" with an empty ent_type
|
||
means that the token is blocked from further processing by NER.
|
||
|
||
RETURNS (str): IOB code of named entity tag.
|
||
"""
|
||
return self.iob_strings()[self.c.ent_iob]
|
||
|
||
property ent_id:
|
||
"""RETURNS (uint64): ID of the entity the token is an instance of,
|
||
if any.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.ent_id
|
||
|
||
def __set__(self, hash_t key):
|
||
self.c.ent_id = key
|
||
|
||
property ent_id_:
|
||
"""RETURNS (str): ID of the entity the token is an instance of,
|
||
if any.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_id]
|
||
|
||
def __set__(self, name):
|
||
self.c.ent_id = self.vocab.strings.add(name)
|
||
|
||
property ent_kb_id:
|
||
"""RETURNS (uint64): Named entity KB ID."""
|
||
def __get__(self):
|
||
return self.c.ent_kb_id
|
||
|
||
def __set__(self, attr_t ent_kb_id):
|
||
self.c.ent_kb_id = ent_kb_id
|
||
|
||
property ent_kb_id_:
|
||
"""RETURNS (str): Named entity KB ID."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_kb_id]
|
||
|
||
def __set__(self, ent_kb_id):
|
||
self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
|
||
|
||
@property
|
||
def whitespace_(self):
|
||
"""RETURNS (str): The trailing whitespace character, if present."""
|
||
return " " if self.c.spacy else ""
|
||
|
||
@property
|
||
def orth_(self):
|
||
"""RETURNS (str): Verbatim text content (identical to
|
||
`Token.text`). Exists mostly for consistency with the other
|
||
attributes.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.orth]
|
||
|
||
@property
|
||
def lower_(self):
|
||
"""RETURNS (str): The lowercase token text. Equivalent to
|
||
`Token.text.lower()`.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.lower]
|
||
|
||
property norm_:
|
||
"""RETURNS (str): The token's norm, i.e. a normalised form of the
|
||
token text. Usually set in the language's tokenizer exceptions or
|
||
norm exceptions.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.norm]
|
||
|
||
def __set__(self, unicode norm_):
|
||
self.c.norm = self.vocab.strings.add(norm_)
|
||
|
||
@property
|
||
def shape_(self):
|
||
"""RETURNS (str): Transform of the tokens's string, to show
|
||
orthographic features. For example, "Xxxx" or "dd".
|
||
"""
|
||
return self.vocab.strings[self.c.lex.shape]
|
||
|
||
@property
|
||
def prefix_(self):
|
||
"""RETURNS (str): A length-N substring from the start of the token.
|
||
Defaults to `N=1`.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.prefix]
|
||
|
||
@property
|
||
def suffix_(self):
|
||
"""RETURNS (str): A length-N substring from the end of the token.
|
||
Defaults to `N=3`.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.suffix]
|
||
|
||
@property
|
||
def lang_(self):
|
||
"""RETURNS (str): Language of the parent document's vocabulary,
|
||
e.g. 'en'.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.lang]
|
||
|
||
property lemma_:
|
||
"""RETURNS (str): The token lemma, i.e. the base form of the word,
|
||
with no inflectional suffixes.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lemma]
|
||
|
||
def __set__(self, unicode lemma_):
|
||
self.c.lemma = self.vocab.strings.add(lemma_)
|
||
|
||
property pos_:
|
||
"""RETURNS (str): Coarse-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return parts_of_speech.NAMES[self.c.pos]
|
||
|
||
def __set__(self, pos_name):
|
||
self.c.pos = parts_of_speech.IDS[pos_name]
|
||
|
||
property tag_:
|
||
"""RETURNS (str): Fine-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.tag]
|
||
|
||
def __set__(self, tag):
|
||
self.tag = self.vocab.strings.add(tag)
|
||
|
||
property dep_:
|
||
"""RETURNS (str): The syntactic dependency label."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.dep]
|
||
|
||
def __set__(self, unicode label):
|
||
self.c.dep = self.vocab.strings.add(label)
|
||
|
||
@property
|
||
def is_oov(self):
|
||
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
|
||
return self.c.lex.orth not in self.vocab.vectors
|
||
|
||
@property
|
||
def is_stop(self):
|
||
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
|
||
"stop list" defined by the language data.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
|
||
|
||
@property
|
||
def is_alpha(self):
|
||
"""RETURNS (bool): Whether the token consists of alpha characters.
|
||
Equivalent to `token.text.isalpha()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
|
||
|
||
@property
|
||
def is_ascii(self):
|
||
"""RETURNS (bool): Whether the token consists of ASCII characters.
|
||
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
|
||
|
||
@property
|
||
def is_digit(self):
|
||
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
|
||
`token.text.isdigit()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
|
||
|
||
@property
|
||
def is_lower(self):
|
||
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
|
||
`token.text.islower()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
|
||
|
||
@property
|
||
def is_upper(self):
|
||
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
|
||
`token.text.isupper()`
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
|
||
|
||
@property
|
||
def is_title(self):
|
||
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
|
||
`token.text.istitle()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
|
||
|
||
@property
|
||
def is_punct(self):
|
||
"""RETURNS (bool): Whether the token is punctuation."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
|
||
|
||
@property
|
||
def is_space(self):
|
||
"""RETURNS (bool): Whether the token consists of whitespace characters.
|
||
Equivalent to `token.text.isspace()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
|
||
|
||
@property
|
||
def is_bracket(self):
|
||
"""RETURNS (bool): Whether the token is a bracket."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
|
||
|
||
@property
|
||
def is_quote(self):
|
||
"""RETURNS (bool): Whether the token is a quotation mark."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
|
||
|
||
@property
|
||
def is_left_punct(self):
|
||
"""RETURNS (bool): Whether the token is a left punctuation mark."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
|
||
|
||
@property
|
||
def is_right_punct(self):
|
||
"""RETURNS (bool): Whether the token is a right punctuation mark."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
|
||
|
||
@property
|
||
def is_currency(self):
|
||
"""RETURNS (bool): Whether the token is a currency symbol."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
|
||
|
||
@property
|
||
def like_url(self):
|
||
"""RETURNS (bool): Whether the token resembles a URL."""
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
|
||
|
||
@property
|
||
def like_num(self):
|
||
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
|
||
"10", "ten", etc.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
|
||
|
||
@property
|
||
def like_email(self):
|
||
"""RETURNS (bool): Whether the token resembles an email address."""
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
|