mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-03 22:06:37 +03:00
c003aac29a
* span finder integrated into spacy from experimental * black * isort * black * default spankey constant * black * Update spacy/pipeline/spancat.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * rename * rename * max_length and min_length as Optional[int] and strict checking * black * mypy fix for integer type infinity * revert line order * implement all comparison operators for inf int * avoid two for loops over all docs by not precomputing * interleave thresholding with span creation * black * revert to not interleaving (relized its faster) * black * Update spacy/errors.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * update dosctring * enforce that the gold and predicted documents have the same text * new error for ensuring reference and predicted texts are the same * remove todo * adjust test * black * handle misaligned tokenization * return correct variable * failing overfit test * only use a single spans_key like in spancat * black * remove debug lines * typo * remove comment * remove near duplicate reduntant method * use the 'spans_key' variable name everywhere * Update spacy/pipeline/span_finder.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * flaky test fix suggestion, hand set bias terms * only test suggester and test result exhaustively * make it clear that the span_finder_suggester is more general (not specific to span_finder) * Update spacy/tests/pipeline/test_span_finder.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Apply suggestions from code review * remove question comment * move preset_spans_suggester test to spancat tests * Add docs and unify default configs for spancat and span finder * Add `allow_overlap=True` to span finder scorer * Fix offset bug in set_annotations * Ignore labels in span finder scorer * Format * Add span_finder to quickstart template * Move settings to self.cfg, store min/max unset as None * Remove debugging * Update docstrings and docs * Update spacy/pipeline/span_finder.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix imports --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
613 lines
22 KiB
Python
613 lines
22 KiB
Python
import pytest
|
|
import numpy
|
|
from numpy.testing import assert_array_equal, assert_almost_equal
|
|
from thinc.api import get_current_ops, NumpyOps, Ragged
|
|
|
|
from spacy import util
|
|
from spacy.lang.en import English
|
|
from spacy.language import Language
|
|
from spacy.tokens import SpanGroup
|
|
from spacy.tokens._dict_proxies import SpanGroups
|
|
from spacy.training import Example
|
|
from spacy.util import fix_random_seed, registry, make_tempdir
|
|
|
|
OPS = get_current_ops()
|
|
|
|
SPAN_KEY = "labeled_spans"
|
|
|
|
SPANCAT_COMPONENTS = ["spancat", "spancat_singlelabel"]
|
|
|
|
TRAIN_DATA = [
|
|
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
|
|
(
|
|
"I like London and Berlin.",
|
|
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}},
|
|
),
|
|
]
|
|
|
|
TRAIN_DATA_OVERLAPPING = [
|
|
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
|
|
(
|
|
"I like London and Berlin",
|
|
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
|
|
),
|
|
("", {"spans": {SPAN_KEY: []}}),
|
|
]
|
|
|
|
|
|
def make_examples(nlp, data=TRAIN_DATA):
|
|
train_examples = []
|
|
for t in data:
|
|
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
|
|
train_examples.append(eg)
|
|
return train_examples
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
def test_no_label(name):
|
|
nlp = Language()
|
|
nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
|
with pytest.raises(ValueError):
|
|
nlp.initialize()
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
def test_no_resize(name):
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
|
spancat.add_label("Thing")
|
|
spancat.add_label("Phrase")
|
|
assert spancat.labels == ("Thing", "Phrase")
|
|
nlp.initialize()
|
|
assert spancat.model.get_dim("nO") == spancat._n_labels
|
|
# this throws an error because the spancat can't be resized after initialization
|
|
with pytest.raises(ValueError):
|
|
spancat.add_label("Stuff")
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
def test_implicit_labels(name):
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
|
assert len(spancat.labels) == 0
|
|
train_examples = make_examples(nlp)
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
assert spancat.labels == ("PERSON", "LOC")
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
def test_explicit_labels(name):
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
|
assert len(spancat.labels) == 0
|
|
spancat.add_label("PERSON")
|
|
spancat.add_label("LOC")
|
|
nlp.initialize()
|
|
assert spancat.labels == ("PERSON", "LOC")
|
|
|
|
|
|
# TODO figure out why this is flaky
|
|
@pytest.mark.skip(reason="Test is unreliable for unknown reason")
|
|
def test_doc_gc():
|
|
# If the Doc object is garbage collected, the spans won't be functional afterwards
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
|
spancat.add_label("PERSON")
|
|
nlp.initialize()
|
|
texts = [
|
|
"Just a sentence.",
|
|
"I like London and Berlin",
|
|
"I like Berlin",
|
|
"I eat ham.",
|
|
]
|
|
all_spans = [doc.spans for doc in nlp.pipe(texts)]
|
|
for text, spangroups in zip(texts, all_spans):
|
|
assert isinstance(spangroups, SpanGroups)
|
|
for key, spangroup in spangroups.items():
|
|
assert isinstance(spangroup, SpanGroup)
|
|
# XXX This fails with length 0 sometimes
|
|
assert len(spangroup) > 0
|
|
with pytest.raises(RuntimeError):
|
|
spangroup[0]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
|
|
)
|
|
def test_make_spangroup_multilabel(max_positive, nr_results):
|
|
fix_random_seed(0)
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(
|
|
"spancat",
|
|
config={"spans_key": SPAN_KEY, "threshold": 0.5, "max_positive": max_positive},
|
|
)
|
|
doc = nlp.make_doc("Greater London")
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
|
|
indices = ngram_suggester([doc])[0].dataXd
|
|
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
|
labels = ["Thing", "City", "Person", "GreatCity"]
|
|
for label in labels:
|
|
spancat.add_label(label)
|
|
scores = numpy.asarray(
|
|
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
|
|
)
|
|
spangroup = spancat._make_span_group_multilabel(doc, indices, scores)
|
|
assert len(spangroup) == nr_results
|
|
|
|
# first span is always the second token "London"
|
|
assert spangroup[0].text == "London"
|
|
assert spangroup[0].label_ == "City"
|
|
assert_almost_equal(0.6, spangroup.attrs["scores"][0], 5)
|
|
|
|
# second span depends on the number of positives that were allowed
|
|
assert spangroup[1].text == "Greater London"
|
|
if max_positive == 1:
|
|
assert spangroup[1].label_ == "GreatCity"
|
|
assert_almost_equal(0.9, spangroup.attrs["scores"][1], 5)
|
|
else:
|
|
assert spangroup[1].label_ == "Thing"
|
|
assert_almost_equal(0.8, spangroup.attrs["scores"][1], 5)
|
|
|
|
if nr_results > 2:
|
|
assert spangroup[2].text == "Greater London"
|
|
if max_positive == 2:
|
|
assert spangroup[2].label_ == "GreatCity"
|
|
assert_almost_equal(0.9, spangroup.attrs["scores"][2], 5)
|
|
else:
|
|
assert spangroup[2].label_ == "City"
|
|
assert_almost_equal(0.7, spangroup.attrs["scores"][2], 5)
|
|
|
|
assert spangroup[-1].text == "Greater London"
|
|
assert spangroup[-1].label_ == "GreatCity"
|
|
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"threshold,allow_overlap,nr_results",
|
|
[(0.05, True, 3), (0.05, False, 1), (0.5, True, 2), (0.5, False, 1)],
|
|
)
|
|
def test_make_spangroup_singlelabel(threshold, allow_overlap, nr_results):
|
|
fix_random_seed(0)
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(
|
|
"spancat",
|
|
config={
|
|
"spans_key": SPAN_KEY,
|
|
"threshold": threshold,
|
|
"max_positive": 1,
|
|
},
|
|
)
|
|
doc = nlp.make_doc("Greater London")
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
|
|
indices = ngram_suggester([doc])[0].dataXd
|
|
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
|
labels = ["Thing", "City", "Person", "GreatCity"]
|
|
for label in labels:
|
|
spancat.add_label(label)
|
|
scores = numpy.asarray(
|
|
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
|
|
)
|
|
spangroup = spancat._make_span_group_singlelabel(
|
|
doc, indices, scores, allow_overlap
|
|
)
|
|
if threshold > 0.4:
|
|
if allow_overlap:
|
|
assert spangroup[0].text == "London"
|
|
assert spangroup[0].label_ == "City"
|
|
assert_almost_equal(0.6, spangroup.attrs["scores"][0], 5)
|
|
assert spangroup[1].text == "Greater London"
|
|
assert spangroup[1].label_ == "GreatCity"
|
|
assert spangroup.attrs["scores"][1] == 0.9
|
|
assert_almost_equal(0.9, spangroup.attrs["scores"][1], 5)
|
|
else:
|
|
assert spangroup[0].text == "Greater London"
|
|
assert spangroup[0].label_ == "GreatCity"
|
|
assert spangroup.attrs["scores"][0] == 0.9
|
|
else:
|
|
if allow_overlap:
|
|
assert spangroup[0].text == "Greater"
|
|
assert spangroup[0].label_ == "City"
|
|
assert spangroup[1].text == "London"
|
|
assert spangroup[1].label_ == "City"
|
|
assert spangroup[2].text == "Greater London"
|
|
assert spangroup[2].label_ == "GreatCity"
|
|
else:
|
|
assert spangroup[0].text == "Greater London"
|
|
|
|
|
|
def test_make_spangroup_negative_label():
|
|
fix_random_seed(0)
|
|
nlp_single = Language()
|
|
nlp_multi = Language()
|
|
spancat_single = nlp_single.add_pipe(
|
|
"spancat",
|
|
config={
|
|
"spans_key": SPAN_KEY,
|
|
"threshold": 0.1,
|
|
"max_positive": 1,
|
|
},
|
|
)
|
|
spancat_multi = nlp_multi.add_pipe(
|
|
"spancat",
|
|
config={
|
|
"spans_key": SPAN_KEY,
|
|
"threshold": 0.1,
|
|
"max_positive": 2,
|
|
},
|
|
)
|
|
spancat_single.add_negative_label = True
|
|
spancat_multi.add_negative_label = True
|
|
doc = nlp_single.make_doc("Greater London")
|
|
labels = ["Thing", "City", "Person", "GreatCity"]
|
|
for label in labels:
|
|
spancat_multi.add_label(label)
|
|
spancat_single.add_label(label)
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
|
|
indices = ngram_suggester([doc])[0].dataXd
|
|
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
|
scores = numpy.asarray(
|
|
[
|
|
[0.2, 0.4, 0.3, 0.1, 0.1],
|
|
[0.1, 0.6, 0.2, 0.4, 0.9],
|
|
[0.8, 0.7, 0.3, 0.9, 0.1],
|
|
],
|
|
dtype="f",
|
|
)
|
|
spangroup_multi = spancat_multi._make_span_group_multilabel(doc, indices, scores)
|
|
spangroup_single = spancat_single._make_span_group_singlelabel(doc, indices, scores)
|
|
assert len(spangroup_single) == 2
|
|
assert spangroup_single[0].text == "Greater"
|
|
assert spangroup_single[0].label_ == "City"
|
|
assert_almost_equal(0.4, spangroup_single.attrs["scores"][0], 5)
|
|
assert spangroup_single[1].text == "Greater London"
|
|
assert spangroup_single[1].label_ == "GreatCity"
|
|
assert spangroup_single.attrs["scores"][1] == 0.9
|
|
assert_almost_equal(0.9, spangroup_single.attrs["scores"][1], 5)
|
|
|
|
assert len(spangroup_multi) == 6
|
|
assert spangroup_multi[0].text == "Greater"
|
|
assert spangroup_multi[0].label_ == "City"
|
|
assert_almost_equal(0.4, spangroup_multi.attrs["scores"][0], 5)
|
|
assert spangroup_multi[1].text == "Greater"
|
|
assert spangroup_multi[1].label_ == "Person"
|
|
assert_almost_equal(0.3, spangroup_multi.attrs["scores"][1], 5)
|
|
assert spangroup_multi[2].text == "London"
|
|
assert spangroup_multi[2].label_ == "City"
|
|
assert_almost_equal(0.6, spangroup_multi.attrs["scores"][2], 5)
|
|
assert spangroup_multi[3].text == "London"
|
|
assert spangroup_multi[3].label_ == "GreatCity"
|
|
assert_almost_equal(0.4, spangroup_multi.attrs["scores"][3], 5)
|
|
assert spangroup_multi[4].text == "Greater London"
|
|
assert spangroup_multi[4].label_ == "Thing"
|
|
assert spangroup_multi[4].text == "Greater London"
|
|
assert_almost_equal(0.8, spangroup_multi.attrs["scores"][4], 5)
|
|
assert spangroup_multi[5].text == "Greater London"
|
|
assert spangroup_multi[5].label_ == "GreatCity"
|
|
assert_almost_equal(0.9, spangroup_multi.attrs["scores"][5], 5)
|
|
|
|
|
|
def test_ngram_suggester(en_tokenizer):
|
|
# test different n-gram lengths
|
|
for size in [1, 2, 3]:
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[size])
|
|
docs = [
|
|
en_tokenizer(text)
|
|
for text in [
|
|
"a",
|
|
"a b",
|
|
"a b c",
|
|
"a b c d",
|
|
"a b c d e",
|
|
"a " * 100,
|
|
]
|
|
]
|
|
ngrams = ngram_suggester(docs)
|
|
# span sizes are correct
|
|
for s in ngrams.data:
|
|
assert s[1] - s[0] == size
|
|
# spans are within docs
|
|
offset = 0
|
|
for i, doc in enumerate(docs):
|
|
spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]]
|
|
spans_set = set()
|
|
for span in spans:
|
|
assert 0 <= span[0] < len(doc)
|
|
assert 0 < span[1] <= len(doc)
|
|
spans_set.add((int(span[0]), int(span[1])))
|
|
# spans are unique
|
|
assert spans.shape[0] == len(spans_set)
|
|
offset += ngrams.lengths[i]
|
|
# the number of spans is correct
|
|
assert_array_equal(
|
|
OPS.to_numpy(ngrams.lengths),
|
|
[max(0, len(doc) - (size - 1)) for doc in docs],
|
|
)
|
|
|
|
# test 1-3-gram suggestions
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
|
|
docs = [
|
|
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
|
|
]
|
|
ngrams = ngram_suggester(docs)
|
|
assert_array_equal(OPS.to_numpy(ngrams.lengths), [1, 3, 6, 9, 12])
|
|
assert_array_equal(
|
|
OPS.to_numpy(ngrams.data),
|
|
[
|
|
# doc 0
|
|
[0, 1],
|
|
# doc 1
|
|
[0, 1],
|
|
[1, 2],
|
|
[0, 2],
|
|
# doc 2
|
|
[0, 1],
|
|
[1, 2],
|
|
[2, 3],
|
|
[0, 2],
|
|
[1, 3],
|
|
[0, 3],
|
|
# doc 3
|
|
[0, 1],
|
|
[1, 2],
|
|
[2, 3],
|
|
[3, 4],
|
|
[0, 2],
|
|
[1, 3],
|
|
[2, 4],
|
|
[0, 3],
|
|
[1, 4],
|
|
# doc 4
|
|
[0, 1],
|
|
[1, 2],
|
|
[2, 3],
|
|
[3, 4],
|
|
[4, 5],
|
|
[0, 2],
|
|
[1, 3],
|
|
[2, 4],
|
|
[3, 5],
|
|
[0, 3],
|
|
[1, 4],
|
|
[2, 5],
|
|
],
|
|
)
|
|
|
|
# test some empty docs
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
|
|
docs = [en_tokenizer(text) for text in ["", "a", ""]]
|
|
ngrams = ngram_suggester(docs)
|
|
assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
|
|
|
|
# test all empty docs
|
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
|
|
docs = [en_tokenizer(text) for text in ["", "", ""]]
|
|
ngrams = ngram_suggester(docs)
|
|
assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
|
|
|
|
|
|
def test_ngram_sizes(en_tokenizer):
|
|
# test that the range suggester works well
|
|
size_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
|
|
suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
|
|
range_suggester = suggester_factory(min_size=1, max_size=3)
|
|
docs = [
|
|
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
|
|
]
|
|
ngrams_1 = size_suggester(docs)
|
|
ngrams_2 = range_suggester(docs)
|
|
assert_array_equal(OPS.to_numpy(ngrams_1.lengths), [1, 3, 6, 9, 12])
|
|
assert_array_equal(OPS.to_numpy(ngrams_1.lengths), OPS.to_numpy(ngrams_2.lengths))
|
|
assert_array_equal(OPS.to_numpy(ngrams_1.data), OPS.to_numpy(ngrams_2.data))
|
|
|
|
# one more variation
|
|
suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
|
|
range_suggester = suggester_factory(min_size=2, max_size=4)
|
|
ngrams_3 = range_suggester(docs)
|
|
assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
|
|
|
|
|
|
def test_preset_spans_suggester():
|
|
nlp = Language()
|
|
docs = [nlp("This is an example."), nlp("This is the second example.")]
|
|
docs[0].spans[SPAN_KEY] = [docs[0][3:4]]
|
|
docs[1].spans[SPAN_KEY] = [docs[1][0:4], docs[1][3:5]]
|
|
suggester = registry.misc.get("spacy.preset_spans_suggester.v1")(spans_key=SPAN_KEY)
|
|
candidates = suggester(docs)
|
|
assert type(candidates) == Ragged
|
|
assert len(candidates) == 2
|
|
assert list(candidates.dataXd[0]) == [3, 4]
|
|
assert list(candidates.dataXd[1]) == [0, 4]
|
|
assert list(candidates.dataXd[2]) == [3, 5]
|
|
assert list(candidates.lengths) == [1, 2]
|
|
|
|
|
|
def test_overfitting_IO():
|
|
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
|
train_examples = make_examples(nlp)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert spancat.model.get_dim("nO") == 2
|
|
assert set(spancat.labels) == {"LOC", "PERSON"}
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["spancat"] < 0.01
|
|
|
|
# test the trained model
|
|
test_text = "I like London and Berlin"
|
|
doc = nlp(test_text)
|
|
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
|
|
spans = doc.spans[SPAN_KEY]
|
|
assert len(spans) == 2
|
|
assert len(spans.attrs["scores"]) == 2
|
|
assert min(spans.attrs["scores"]) > 0.8
|
|
assert set([span.text for span in spans]) == {"London", "Berlin"}
|
|
assert set([span.label_ for span in spans]) == {"LOC"}
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
spans2 = doc2.spans[SPAN_KEY]
|
|
assert len(spans2) == 2
|
|
assert len(spans2.attrs["scores"]) == 2
|
|
assert min(spans2.attrs["scores"]) > 0.8
|
|
assert set([span.text for span in spans2]) == {"London", "Berlin"}
|
|
assert set([span.label_ for span in spans2]) == {"LOC"}
|
|
|
|
# Test scoring
|
|
scores = nlp.evaluate(train_examples)
|
|
assert f"spans_{SPAN_KEY}_f" in scores
|
|
assert scores[f"spans_{SPAN_KEY}_p"] == 1.0
|
|
assert scores[f"spans_{SPAN_KEY}_r"] == 1.0
|
|
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
|
|
|
|
# also test that the spancat works for just a single entity in a sentence
|
|
doc = nlp("London")
|
|
assert len(doc.spans[spancat.key]) == 1
|
|
|
|
|
|
def test_overfitting_IO_overlapping():
|
|
# Test for overfitting on overlapping entities
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
|
|
|
train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert spancat.model.get_dim("nO") == 3
|
|
assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"}
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["spancat"] < 0.01
|
|
|
|
# test the trained model
|
|
test_text = "I like London and Berlin"
|
|
doc = nlp(test_text)
|
|
spans = doc.spans[SPAN_KEY]
|
|
assert len(spans) == 3
|
|
assert len(spans.attrs["scores"]) == 3
|
|
assert min(spans.attrs["scores"]) > 0.9
|
|
assert set([span.text for span in spans]) == {
|
|
"London",
|
|
"Berlin",
|
|
"London and Berlin",
|
|
}
|
|
assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"}
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
spans2 = doc2.spans[SPAN_KEY]
|
|
assert len(spans2) == 3
|
|
assert len(spans2.attrs["scores"]) == 3
|
|
assert min(spans2.attrs["scores"]) > 0.9
|
|
assert set([span.text for span in spans2]) == {
|
|
"London",
|
|
"Berlin",
|
|
"London and Berlin",
|
|
}
|
|
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
def test_zero_suggestions(name):
|
|
# Test with a suggester that can return 0 suggestions
|
|
@registry.misc("test_mixed_zero_suggester")
|
|
def make_mixed_zero_suggester():
|
|
def mixed_zero_suggester(docs, *, ops=None):
|
|
if ops is None:
|
|
ops = get_current_ops()
|
|
spans = []
|
|
lengths = []
|
|
for doc in docs:
|
|
if len(doc) > 0 and len(doc) % 2 == 0:
|
|
spans.append((0, 1))
|
|
lengths.append(1)
|
|
else:
|
|
lengths.append(0)
|
|
spans = ops.asarray2i(spans)
|
|
lengths_array = ops.asarray1i(lengths)
|
|
if len(spans) > 0:
|
|
output = Ragged(ops.xp.vstack(spans), lengths_array)
|
|
else:
|
|
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
|
|
return output
|
|
|
|
return mixed_zero_suggester
|
|
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
spancat = nlp.add_pipe(
|
|
name,
|
|
config={
|
|
"suggester": {"@misc": "test_mixed_zero_suggester"},
|
|
"spans_key": SPAN_KEY,
|
|
},
|
|
)
|
|
train_examples = make_examples(nlp)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert spancat.model.get_dim("nO") == spancat._n_labels
|
|
assert set(spancat.labels) == {"LOC", "PERSON"}
|
|
|
|
nlp.update(train_examples, sgd=optimizer)
|
|
# empty doc
|
|
nlp("")
|
|
# single doc with zero suggestions
|
|
nlp("one")
|
|
# single doc with one suggestion
|
|
nlp("two two")
|
|
# batch with mixed zero/one suggestions
|
|
list(nlp.pipe(["one", "two two", "three three three", "", "four four four four"]))
|
|
# batch with no suggestions
|
|
list(nlp.pipe(["", "one", "three three three"]))
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
def test_set_candidates(name):
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
|
train_examples = make_examples(nlp)
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
texts = [
|
|
"Just a sentence.",
|
|
"I like London and Berlin",
|
|
"I like Berlin",
|
|
"I eat ham.",
|
|
]
|
|
|
|
docs = [nlp(text) for text in texts]
|
|
spancat.set_candidates(docs)
|
|
|
|
assert len(docs) == len(texts)
|
|
assert type(docs[0].spans["candidates"]) == SpanGroup
|
|
assert len(docs[0].spans["candidates"]) == 9
|
|
assert docs[0].spans["candidates"][0].text == "Just"
|
|
assert docs[0].spans["candidates"][4].text == "Just a"
|
|
|
|
|
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
|
@pytest.mark.parametrize("n_process", [1, 2])
|
|
def test_spancat_multiprocessing(name, n_process):
|
|
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
|
|
nlp = Language()
|
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
|
train_examples = make_examples(nlp)
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
texts = [
|
|
"Just a sentence.",
|
|
"I like London and Berlin",
|
|
"I like Berlin",
|
|
"I eat ham.",
|
|
]
|
|
docs = list(nlp.pipe(texts, n_process=n_process))
|
|
assert len(docs) == len(texts)
|