mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			1210 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1210 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Any, Callable, Dict, Iterable, Tuple
 | |
| 
 | |
| import pytest
 | |
| from numpy.testing import assert_equal
 | |
| 
 | |
| from spacy import Language, registry, util
 | |
| from spacy.attrs import ENT_KB_ID
 | |
| from spacy.compat import pickle
 | |
| from spacy.kb import Candidate, InMemoryLookupKB, KnowledgeBase, get_candidates
 | |
| from spacy.lang.en import English
 | |
| from spacy.ml import load_kb
 | |
| from spacy.ml.models.entity_linker import build_span_maker
 | |
| from spacy.pipeline import EntityLinker
 | |
| from spacy.pipeline.legacy import EntityLinker_v1
 | |
| from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | |
| from spacy.scorer import Scorer
 | |
| from spacy.tests.util import make_tempdir
 | |
| from spacy.tokens import Doc, Span
 | |
| from spacy.training import Example
 | |
| from spacy.util import ensure_path
 | |
| from spacy.vocab import Vocab
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return English()
 | |
| 
 | |
| 
 | |
| def assert_almost_equal(a, b):
 | |
|     delta = 0.0001
 | |
|     assert a - delta <= b <= a + delta
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4674)
 | |
| def test_issue4674():
 | |
|     """Test that setting entities with overlapping identifiers does not mess up IO"""
 | |
|     nlp = English()
 | |
|     kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
|     vector1 = [0.9, 1.1, 1.01]
 | |
|     vector2 = [1.8, 2.25, 2.01]
 | |
|     with pytest.warns(UserWarning):
 | |
|         kb.set_entities(
 | |
|             entity_list=["Q1", "Q1"],
 | |
|             freq_list=[32, 111],
 | |
|             vector_list=[vector1, vector2],
 | |
|         )
 | |
|     assert kb.get_size_entities() == 1
 | |
|     # dumping to file & loading back in
 | |
|     with make_tempdir() as d:
 | |
|         dir_path = ensure_path(d)
 | |
|         if not dir_path.exists():
 | |
|             dir_path.mkdir()
 | |
|         file_path = dir_path / "kb"
 | |
|         kb.to_disk(str(file_path))
 | |
|         kb2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
|         kb2.from_disk(str(file_path))
 | |
|     assert kb2.get_size_entities() == 1
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(6730)
 | |
| def test_issue6730(en_vocab):
 | |
|     """Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
 | |
|     from spacy.kb.kb_in_memory import InMemoryLookupKB
 | |
| 
 | |
|     kb = InMemoryLookupKB(en_vocab, entity_vector_length=3)
 | |
|     kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
 | |
| 
 | |
|     with pytest.raises(ValueError):
 | |
|         kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
 | |
|     assert kb.contains_alias("") is False
 | |
| 
 | |
|     kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
 | |
|     kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
 | |
| 
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         kb.to_disk(tmp_dir)
 | |
|         kb.from_disk(tmp_dir)
 | |
|     assert kb.get_size_aliases() == 2
 | |
|     assert set(kb.get_alias_strings()) == {"x", "y"}
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(7065)
 | |
| def test_issue7065():
 | |
|     text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival."
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     patterns = [
 | |
|         {
 | |
|             "label": "THING",
 | |
|             "pattern": [
 | |
|                 {"LOWER": "symphony"},
 | |
|                 {"LOWER": "no"},
 | |
|                 {"LOWER": "."},
 | |
|                 {"LOWER": "8"},
 | |
|             ],
 | |
|         }
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     doc = nlp(text)
 | |
|     sentences = [s for s in doc.sents]
 | |
|     assert len(sentences) == 2
 | |
|     sent0 = sentences[0]
 | |
|     ent = doc.ents[0]
 | |
|     assert ent.start < sent0.end < ent.end
 | |
|     assert sentences.index(ent.sent) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(7065)
 | |
| @pytest.mark.parametrize("entity_in_first_sentence", [True, False])
 | |
| def test_sentence_crossing_ents(entity_in_first_sentence: bool):
 | |
|     """Tests if NEL crashes if entities cross sentence boundaries and the first associated sentence doesn't have an
 | |
|     entity.
 | |
|     entity_in_prior_sentence (bool): Whether to include an entity in the first sentence associated with the
 | |
|     sentence-crossing entity.
 | |
|     """
 | |
|     # Test that the NEL doesn't crash when an entity crosses a sentence boundary
 | |
|     nlp = English()
 | |
|     vector_length = 3
 | |
|     text = "Mahler 's Symphony No. 8 was beautiful."
 | |
|     entities = [(10, 24, "WORK")]
 | |
|     links = {(10, 24): {"Q7304": 0.0, "Q270853": 1.0}}
 | |
|     if entity_in_first_sentence:
 | |
|         entities.append((0, 6, "PERSON"))
 | |
|         links[(0, 6)] = {"Q7304": 1.0, "Q270853": 0.0}
 | |
|     sent_starts = [1, -1, 0, 0, 0, 1, 0, 0, 0]
 | |
|     doc = nlp(text)
 | |
|     example = Example.from_dict(
 | |
|         doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
 | |
|     )
 | |
|     train_examples = [example]
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
 | |
|         mykb.add_alias(
 | |
|             alias="No. 8",
 | |
|             entities=["Q270853"],
 | |
|             probabilities=[1.0],
 | |
|         )
 | |
|         mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias(
 | |
|             alias="Mahler",
 | |
|             entities=["Q7304"],
 | |
|             probabilities=[1.0],
 | |
|         )
 | |
|         return mykb
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline
 | |
|     entity_linker = nlp.add_pipe("entity_linker", last=True)
 | |
|     entity_linker.set_kb(create_kb)  # type: ignore
 | |
|     # train the NEL pipe
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(2):
 | |
|         nlp.update(train_examples, sgd=optimizer)
 | |
| 
 | |
|     # This shouldn't crash.
 | |
|     entity_linker.predict([example.reference])  # type: ignore
 | |
| 
 | |
| 
 | |
| def test_no_entities():
 | |
|     # Test that having no entities doesn't crash the model
 | |
|     TRAIN_DATA = [
 | |
|         (
 | |
|             "The sky is blue.",
 | |
|             {
 | |
|                 "sent_starts": [1, 0, 0, 0, 0],
 | |
|             },
 | |
|         )
 | |
|     ]
 | |
|     nlp = English()
 | |
|     vector_length = 3
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
 | |
|         return mykb
 | |
| 
 | |
|     # Create and train the Entity Linker
 | |
|     entity_linker = nlp.add_pipe("entity_linker", last=True)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(2):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # adding additional components that are required for the entity_linker
 | |
|     nlp.add_pipe("sentencizer", first=True)
 | |
| 
 | |
|     # this will run the pipeline on the examples and shouldn't crash
 | |
|     nlp.evaluate(train_examples)
 | |
| 
 | |
| 
 | |
| def test_partial_links():
 | |
|     # Test that having some entities on the doc without gold links, doesn't crash
 | |
|     TRAIN_DATA = [
 | |
|         (
 | |
|             "Russ Cochran his reprints include EC Comics.",
 | |
|             {
 | |
|                 "links": {(0, 12): {"Q2146908": 1.0}},
 | |
|                 "entities": [(0, 12, "PERSON")],
 | |
|                 "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0],
 | |
|             },
 | |
|         )
 | |
|     ]
 | |
|     nlp = English()
 | |
|     vector_length = 3
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
 | |
|         return mykb
 | |
| 
 | |
|     # Create and train the Entity Linker
 | |
|     entity_linker = nlp.add_pipe("entity_linker", last=True)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(2):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # adding additional components that are required for the entity_linker
 | |
|     nlp.add_pipe("sentencizer", first=True)
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
 | |
|         {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     # this will run the pipeline on the examples and shouldn't crash
 | |
|     results = nlp.evaluate(train_examples)
 | |
|     assert "PERSON" in results["ents_per_type"]
 | |
|     assert "PERSON" in results["nel_f_per_type"]
 | |
|     assert "ORG" in results["ents_per_type"]
 | |
|     assert "ORG" not in results["nel_f_per_type"]
 | |
| 
 | |
| 
 | |
| def test_kb_valid_entities(nlp):
 | |
|     """Test the valid construction of a KB with 3 entities and two aliases"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the corresponding KB
 | |
|     assert mykb.get_size_entities() == 3
 | |
|     assert mykb.get_size_aliases() == 2
 | |
| 
 | |
|     # test retrieval of the entity vectors
 | |
|     assert mykb.get_vector("Q1") == [8, 4, 3]
 | |
|     assert mykb.get_vector("Q2") == [2, 1, 0]
 | |
|     assert mykb.get_vector("Q3") == [-1, -6, 5]
 | |
| 
 | |
|     # test retrieval of prior probabilities
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entities(nlp):
 | |
|     """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because one of the given IDs is not valid
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_probabilities(nlp):
 | |
|     """Test the invalid construction of a KB with wrong prior probabilities"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the sum of the probabilities exceeds 1
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_combination(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entity_vector(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
 | |
| 
 | |
|     # this should fail because the kb's expected entity vector length is 3
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
| 
 | |
| 
 | |
| def test_kb_default(nlp):
 | |
|     """Test that the default (empty) KB is loaded upon construction"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={})
 | |
|     assert len(entity_linker.kb) == 0
 | |
|     with pytest.raises(ValueError, match="E139"):
 | |
|         # this raises an error because the KB is empty
 | |
|         entity_linker.validate_kb()
 | |
|     assert entity_linker.kb.get_size_entities() == 0
 | |
|     assert entity_linker.kb.get_size_aliases() == 0
 | |
|     # 64 is the default value from pipeline.entity_linker
 | |
|     assert entity_linker.kb.entity_vector_length == 64
 | |
| 
 | |
| 
 | |
| def test_kb_custom_length(nlp):
 | |
|     """Test that the default (empty) KB can be configured with a custom entity length"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 35})
 | |
|     assert len(entity_linker.kb) == 0
 | |
|     assert entity_linker.kb.get_size_entities() == 0
 | |
|     assert entity_linker.kb.get_size_aliases() == 0
 | |
|     assert entity_linker.kb.entity_vector_length == 35
 | |
| 
 | |
| 
 | |
| def test_kb_initialize_empty(nlp):
 | |
|     """Test that the EL can't initialize without examples"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker")
 | |
|     with pytest.raises(TypeError):
 | |
|         entity_linker.initialize(lambda: [])
 | |
| 
 | |
| 
 | |
| def test_kb_serialize(nlp):
 | |
|     """Test serialization of the KB"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
|     with make_tempdir() as d:
 | |
|         # normal read-write behaviour
 | |
|         mykb.to_disk(d / "kb")
 | |
|         mykb.from_disk(d / "kb")
 | |
|         mykb.to_disk(d / "new" / "kb")
 | |
|         mykb.from_disk(d / "new" / "kb")
 | |
|         # allow overwriting an existing file
 | |
|         mykb.to_disk(d / "kb")
 | |
|         with pytest.raises(ValueError):
 | |
|             # can not read from an unknown file
 | |
|             mykb.from_disk(d / "unknown" / "kb")
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(9137)
 | |
| def test_kb_serialize_2(nlp):
 | |
|     v = [5, 6, 7, 8]
 | |
|     kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
 | |
|     kb1.set_entities(["E1"], [1], [v])
 | |
|     assert kb1.get_vector("E1") == v
 | |
|     with make_tempdir() as d:
 | |
|         kb1.to_disk(d / "kb")
 | |
|         kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
 | |
|         kb2.from_disk(d / "kb")
 | |
|         assert kb2.get_vector("E1") == v
 | |
| 
 | |
| 
 | |
| def test_kb_set_entities(nlp):
 | |
|     """Test that set_entities entirely overwrites the previous set of entities"""
 | |
|     v = [5, 6, 7, 8]
 | |
|     v1 = [1, 1, 1, 0]
 | |
|     v2 = [2, 2, 2, 3]
 | |
|     kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
 | |
|     kb1.set_entities(["E0"], [1], [v])
 | |
|     assert kb1.get_entity_strings() == ["E0"]
 | |
|     kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2])
 | |
|     assert set(kb1.get_entity_strings()) == {"E1", "E2"}
 | |
|     assert kb1.get_vector("E1") == v1
 | |
|     assert kb1.get_vector("E2") == v2
 | |
|     with make_tempdir() as d:
 | |
|         kb1.to_disk(d / "kb")
 | |
|         kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
 | |
|         kb2.from_disk(d / "kb")
 | |
|         assert set(kb2.get_entity_strings()) == {"E1", "E2"}
 | |
|         assert kb2.get_vector("E1") == v1
 | |
|         assert kb2.get_vector("E2") == v2
 | |
| 
 | |
| 
 | |
| def test_kb_serialize_vocab(nlp):
 | |
|     """Test serialization of the KB and custom strings"""
 | |
|     entity = "MyFunnyID"
 | |
|     assert entity not in nlp.vocab.strings
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
|     assert not mykb.contains_entity(entity)
 | |
|     mykb.add_entity(entity, freq=342, entity_vector=[3])
 | |
|     assert mykb.contains_entity(entity)
 | |
|     assert entity in mykb.vocab.strings
 | |
|     with make_tempdir() as d:
 | |
|         # normal read-write behaviour
 | |
|         mykb.to_disk(d / "kb")
 | |
|         mykb_new = InMemoryLookupKB(Vocab(), entity_vector_length=1)
 | |
|         mykb_new.from_disk(d / "kb")
 | |
|         assert entity in mykb_new.vocab.strings
 | |
| 
 | |
| 
 | |
| def test_candidate_generation(nlp):
 | |
|     """Test correct candidate generation"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
|     doc = nlp("douglas adam Adam shrubbery")
 | |
| 
 | |
|     douglas_ent = doc[0:1]
 | |
|     adam_ent = doc[1:2]
 | |
|     Adam_ent = doc[2:3]
 | |
|     shrubbery_ent = doc[3:4]
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(get_candidates(mykb, douglas_ent)) == 2
 | |
|     assert len(get_candidates(mykb, adam_ent)) == 1
 | |
|     assert len(get_candidates(mykb, Adam_ent)) == 0  # default case sensitive
 | |
|     assert len(get_candidates(mykb, shrubbery_ent)) == 0
 | |
| 
 | |
|     # test the content of the candidates
 | |
|     assert get_candidates(mykb, adam_ent)[0].entity_ == "Q2"
 | |
|     assert get_candidates(mykb, adam_ent)[0].alias_ == "adam"
 | |
|     assert_almost_equal(get_candidates(mykb, adam_ent)[0].entity_freq, 12)
 | |
|     assert_almost_equal(get_candidates(mykb, adam_ent)[0].prior_prob, 0.9)
 | |
| 
 | |
| 
 | |
| def test_el_pipe_configuration(nlp):
 | |
|     """Test correct candidate generation as part of the EL pipe"""
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     pattern = {"label": "PERSON", "pattern": [{"LOWER": "douglas"}]}
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns([pattern])
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         kb = InMemoryLookupKB(vocab, entity_vector_length=1)
 | |
|         kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|         kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
|         kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|         return kb
 | |
| 
 | |
|     # run an EL pipe without a trained context encoder, to check the candidate generation step only
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={"incl_context": False})
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     # With the default get_candidates function, matching is case-sensitive
 | |
|     text = "Douglas and douglas are not the same."
 | |
|     doc = nlp(text)
 | |
|     assert doc[0].ent_kb_id_ == "NIL"
 | |
|     assert doc[1].ent_kb_id_ == ""
 | |
|     assert doc[2].ent_kb_id_ == "Q2"
 | |
| 
 | |
|     def get_lowercased_candidates(kb, span):
 | |
|         return kb.get_alias_candidates(span.text.lower())
 | |
| 
 | |
|     def get_lowercased_candidates_batch(kb, spans):
 | |
|         return [get_lowercased_candidates(kb, span) for span in spans]
 | |
| 
 | |
|     @registry.misc("spacy.LowercaseCandidateGenerator.v1")
 | |
|     def create_candidates() -> Callable[
 | |
|         [InMemoryLookupKB, "Span"], Iterable[Candidate]
 | |
|     ]:
 | |
|         return get_lowercased_candidates
 | |
| 
 | |
|     @registry.misc("spacy.LowercaseCandidateBatchGenerator.v1")
 | |
|     def create_candidates_batch() -> Callable[
 | |
|         [InMemoryLookupKB, Iterable["Span"]], Iterable[Iterable[Candidate]]
 | |
|     ]:
 | |
|         return get_lowercased_candidates_batch
 | |
| 
 | |
|     # replace the pipe with a new one with with a different candidate generator
 | |
|     entity_linker = nlp.replace_pipe(
 | |
|         "entity_linker",
 | |
|         "entity_linker",
 | |
|         config={
 | |
|             "incl_context": False,
 | |
|             "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
 | |
|             "get_candidates_batch": {
 | |
|                 "@misc": "spacy.LowercaseCandidateBatchGenerator.v1"
 | |
|             },
 | |
|         },
 | |
|     )
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     doc = nlp(text)
 | |
|     assert doc[0].ent_kb_id_ == "Q2"
 | |
|     assert doc[1].ent_kb_id_ == ""
 | |
|     assert doc[2].ent_kb_id_ == "Q2"
 | |
| 
 | |
| 
 | |
| def test_nel_nsents(nlp):
 | |
|     """Test that n_sents can be set through the configuration"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={})
 | |
|     assert entity_linker.n_sents == 0
 | |
|     entity_linker = nlp.replace_pipe(
 | |
|         "entity_linker", "entity_linker", config={"n_sents": 2}
 | |
|     )
 | |
|     assert entity_linker.n_sents == 2
 | |
| 
 | |
| 
 | |
| def test_vocab_serialization(nlp):
 | |
|     """Test that string information is retained across storage"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | |
|     adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     candidates = mykb.get_alias_candidates("adam")
 | |
|     assert len(candidates) == 1
 | |
|     assert candidates[0].entity == q2_hash
 | |
|     assert candidates[0].entity_ == "Q2"
 | |
|     assert candidates[0].alias == adam_hash
 | |
|     assert candidates[0].alias_ == "adam"
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         mykb.to_disk(d / "kb")
 | |
|         kb_new_vocab = InMemoryLookupKB(Vocab(), entity_vector_length=1)
 | |
|         kb_new_vocab.from_disk(d / "kb")
 | |
| 
 | |
|         candidates = kb_new_vocab.get_alias_candidates("adam")
 | |
|         assert len(candidates) == 1
 | |
|         assert candidates[0].entity == q2_hash
 | |
|         assert candidates[0].entity_ == "Q2"
 | |
|         assert candidates[0].alias == adam_hash
 | |
|         assert candidates[0].alias_ == "adam"
 | |
| 
 | |
|         assert kb_new_vocab.get_vector("Q2") == [2]
 | |
|         assert_almost_equal(kb_new_vocab.get_prior_prob("Q2", "douglas"), 0.4)
 | |
| 
 | |
| 
 | |
| def test_append_alias(nlp):
 | |
|     """Test that we can append additional alias-entity pairs"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_alias_candidates("douglas")) == 2
 | |
| 
 | |
|     # append an alias
 | |
|     mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
|     # test the size of the relevant candidates has been incremented
 | |
|     assert len(mykb.get_alias_candidates("douglas")) == 3
 | |
| 
 | |
|     # append the same alias-entity pair again should not work (will throw a warning)
 | |
|     with pytest.warns(UserWarning):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
 | |
| 
 | |
|     # test the size of the relevant candidates remained unchanged
 | |
|     assert len(mykb.get_alias_candidates("douglas")) == 3
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore:\\[W036")
 | |
| def test_append_invalid_alias(nlp):
 | |
|     """Test that append an alias will throw an error if prior probs are exceeding 1"""
 | |
|     mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # append an alias - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore:\\[W036")
 | |
| def test_preserving_links_asdoc(nlp):
 | |
|     """Test that Span.as_doc preserves the existing entity links"""
 | |
|     vector_length = 1
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         # adding entities
 | |
|         mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|         mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
 | |
|         # adding aliases
 | |
|         mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
 | |
|         mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | |
|         return mykb
 | |
| 
 | |
|     # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     patterns = [
 | |
|         {"label": "GPE", "pattern": "Boston"},
 | |
|         {"label": "GPE", "pattern": "Denver"},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     config = {"incl_prior": False}
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config=config, last=True)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     nlp.initialize()
 | |
|     assert entity_linker.model.get_dim("nO") == vector_length
 | |
| 
 | |
|     # test whether the entity links are preserved by the `as_doc()` function
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     for ent in doc.ents:
 | |
|         orig_text = ent.text
 | |
|         orig_kb_id = ent.kb_id_
 | |
|         sent_doc = ent.sent.as_doc()
 | |
|         for s_ent in sent_doc.ents:
 | |
|             if s_ent.text == orig_text:
 | |
|                 assert s_ent.kb_id_ == orig_kb_id
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
 | |
|     doc.ents = [boston_ent]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents_2(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     loc = doc.vocab.strings.add("LOC")
 | |
|     q1 = doc.vocab.strings.add("Q1")
 | |
| 
 | |
|     doc.ents = [(loc, q1, 3, 4)]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| TRAIN_DATA = [
 | |
|     ("Russ Cochran captured his first major title with his son as caddie.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
 | |
|     ("Russ Cochran his reprints include EC Comics.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON"), (34, 43, "ART")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
 | |
|     ("Russ Cochran has been publishing comic art.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
 | |
|     ("Russ Cochran was a member of University of Kentucky's golf team.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON"), (43, 51, "LOC")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
 | |
|     # having a blank instance shouldn't break things
 | |
|     ("The weather is nice today.",
 | |
|         {"links": {}, "entities": [],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0]})
 | |
| ]
 | |
| GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
 | |
| # fmt: on
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     vector_length = 3
 | |
|     assert "Q2146908" not in nlp.vocab.strings
 | |
| 
 | |
|     # Convert the texts to docs to make sure we have doc.ents set for the training examples
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB - assign same prior weight to the two russ cochran's
 | |
|         # Q2146908 (Russ Cochran): American golfer
 | |
|         # Q7381115 (Russ Cochran): publisher
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
 | |
|         mykb.add_alias(
 | |
|             alias="Russ Cochran",
 | |
|             entities=["Q2146908", "Q7381115"],
 | |
|             probabilities=[0.5, 0.5],
 | |
|         )
 | |
|         return mykb
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline
 | |
|     entity_linker = nlp.add_pipe("entity_linker", last=True)
 | |
|     assert isinstance(entity_linker, EntityLinker)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     assert "Q2146908" in entity_linker.vocab.strings
 | |
|     assert "Q2146908" in entity_linker.kb.vocab.strings
 | |
| 
 | |
|     # train the NEL pipe
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert entity_linker.model.get_dim("nO") == vector_length
 | |
|     assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["entity_linker"] < 0.001
 | |
| 
 | |
|     # adding additional components that are required for the entity_linker
 | |
|     nlp.add_pipe("sentencizer", first=True)
 | |
| 
 | |
|     # Add a custom component to recognize "Russ Cochran" as an entity for the example training data
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     # test the trained model
 | |
|     predictions = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         for ent in doc.ents:
 | |
|             predictions.append(ent.kb_id_)
 | |
|     assert predictions == GOLD_entities
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         assert nlp2.pipe_names == nlp.pipe_names
 | |
|         assert "Q2146908" in nlp2.vocab.strings
 | |
|         entity_linker2 = nlp2.get_pipe("entity_linker")
 | |
|         assert "Q2146908" in entity_linker2.vocab.strings
 | |
|         assert "Q2146908" in entity_linker2.kb.vocab.strings
 | |
|         predictions = []
 | |
|         for text, annotation in TRAIN_DATA:
 | |
|             doc2 = nlp2(text)
 | |
|             for ent in doc2.ents:
 | |
|                 predictions.append(ent.kb_id_)
 | |
|         assert predictions == GOLD_entities
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = [
 | |
|         "Russ Cochran captured his first major title with his son as caddie.",
 | |
|         "Russ Cochran his reprints include EC Comics.",
 | |
|         "Russ Cochran has been publishing comic art.",
 | |
|         "Russ Cochran was a member of University of Kentucky's golf team.",
 | |
|     ]
 | |
|     batch_deps_1 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [doc.to_array([ENT_KB_ID]) for doc in [nlp(text) for text in texts]]
 | |
|     assert_equal(batch_deps_1, batch_deps_2)
 | |
|     assert_equal(batch_deps_1, no_batch_deps)
 | |
| 
 | |
| 
 | |
| def test_kb_serialization():
 | |
|     # Test that the KB can be used in a pipeline with a different vocab
 | |
|     vector_length = 3
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         kb_dir = tmp_dir / "kb"
 | |
|         nlp1 = English()
 | |
|         assert "Q2146908" not in nlp1.vocab.strings
 | |
|         mykb = InMemoryLookupKB(nlp1.vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
 | |
|         assert "Q2146908" in nlp1.vocab.strings
 | |
|         mykb.to_disk(kb_dir)
 | |
| 
 | |
|         nlp2 = English()
 | |
|         assert "RandomWord" not in nlp2.vocab.strings
 | |
|         nlp2.vocab.strings.add("RandomWord")
 | |
|         assert "RandomWord" in nlp2.vocab.strings
 | |
|         assert "Q2146908" not in nlp2.vocab.strings
 | |
| 
 | |
|         # Create the Entity Linker component with the KB from file, and check the final vocab
 | |
|         entity_linker = nlp2.add_pipe("entity_linker", last=True)
 | |
|         entity_linker.set_kb(load_kb(kb_dir))
 | |
|         assert "Q2146908" in nlp2.vocab.strings
 | |
|         assert "RandomWord" in nlp2.vocab.strings
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail(reason="Needs fixing")
 | |
| def test_kb_pickle():
 | |
|     # Test that the KB can be pickled
 | |
|     nlp = English()
 | |
|     kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
|     kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|     assert not kb_1.contains_alias("Russ Cochran")
 | |
|     kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
 | |
|     assert kb_1.contains_alias("Russ Cochran")
 | |
|     data = pickle.dumps(kb_1)
 | |
|     kb_2 = pickle.loads(data)
 | |
|     assert kb_2.contains_alias("Russ Cochran")
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail(reason="Needs fixing")
 | |
| def test_nel_pickle():
 | |
|     # Test that a pipeline with an EL component can be pickled
 | |
|     def create_kb(vocab):
 | |
|         kb = InMemoryLookupKB(vocab, entity_vector_length=3)
 | |
|         kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
 | |
|         return kb
 | |
| 
 | |
|     nlp_1 = English()
 | |
|     nlp_1.add_pipe("ner")
 | |
|     entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True)
 | |
|     entity_linker_1.set_kb(create_kb)
 | |
|     assert nlp_1.pipe_names == ["ner", "entity_linker"]
 | |
|     assert entity_linker_1.kb.contains_alias("Russ Cochran")
 | |
| 
 | |
|     data = pickle.dumps(nlp_1)
 | |
|     nlp_2 = pickle.loads(data)
 | |
|     assert nlp_2.pipe_names == ["ner", "entity_linker"]
 | |
|     entity_linker_2 = nlp_2.get_pipe("entity_linker")
 | |
|     assert entity_linker_2.kb.contains_alias("Russ Cochran")
 | |
| 
 | |
| 
 | |
| def test_kb_to_bytes():
 | |
|     # Test that the KB's to_bytes method works correctly
 | |
|     nlp = English()
 | |
|     kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
|     kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|     kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3])
 | |
|     kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
 | |
|     kb_1.add_alias(alias="Boeing", entities=["Q66"], probabilities=[0.5])
 | |
|     kb_1.add_alias(
 | |
|         alias="Randomness", entities=["Q66", "Q2146908"], probabilities=[0.1, 0.2]
 | |
|     )
 | |
|     assert kb_1.contains_alias("Russ Cochran")
 | |
|     kb_bytes = kb_1.to_bytes()
 | |
|     kb_2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
 | |
|     assert not kb_2.contains_alias("Russ Cochran")
 | |
|     kb_2 = kb_2.from_bytes(kb_bytes)
 | |
|     # check that both KBs are exactly the same
 | |
|     assert kb_1.get_size_entities() == kb_2.get_size_entities()
 | |
|     assert kb_1.entity_vector_length == kb_2.entity_vector_length
 | |
|     assert kb_1.get_entity_strings() == kb_2.get_entity_strings()
 | |
|     assert kb_1.get_vector("Q2146908") == kb_2.get_vector("Q2146908")
 | |
|     assert kb_1.get_vector("Q66") == kb_2.get_vector("Q66")
 | |
|     assert kb_2.contains_alias("Russ Cochran")
 | |
|     assert kb_1.get_size_aliases() == kb_2.get_size_aliases()
 | |
|     assert kb_1.get_alias_strings() == kb_2.get_alias_strings()
 | |
|     assert len(kb_1.get_alias_candidates("Russ Cochran")) == len(
 | |
|         kb_2.get_alias_candidates("Russ Cochran")
 | |
|     )
 | |
|     assert len(kb_1.get_alias_candidates("Randomness")) == len(
 | |
|         kb_2.get_alias_candidates("Randomness")
 | |
|     )
 | |
| 
 | |
| 
 | |
| def test_nel_to_bytes():
 | |
|     # Test that a pipeline with an EL component can be converted to bytes
 | |
|     def create_kb(vocab):
 | |
|         kb = InMemoryLookupKB(vocab, entity_vector_length=3)
 | |
|         kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
 | |
|         return kb
 | |
| 
 | |
|     nlp_1 = English()
 | |
|     nlp_1.add_pipe("ner")
 | |
|     entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True)
 | |
|     entity_linker_1.set_kb(create_kb)
 | |
|     assert entity_linker_1.kb.contains_alias("Russ Cochran")
 | |
|     assert nlp_1.pipe_names == ["ner", "entity_linker"]
 | |
| 
 | |
|     nlp_bytes = nlp_1.to_bytes()
 | |
|     nlp_2 = English()
 | |
|     nlp_2.add_pipe("ner")
 | |
|     nlp_2.add_pipe("entity_linker", last=True)
 | |
|     assert nlp_2.pipe_names == ["ner", "entity_linker"]
 | |
|     assert not nlp_2.get_pipe("entity_linker").kb.contains_alias("Russ Cochran")
 | |
|     nlp_2 = nlp_2.from_bytes(nlp_bytes)
 | |
|     kb_2 = nlp_2.get_pipe("entity_linker").kb
 | |
|     assert kb_2.contains_alias("Russ Cochran")
 | |
|     assert kb_2.get_vector("Q2146908") == [6, -4, 3]
 | |
|     assert_almost_equal(
 | |
|         kb_2.get_prior_prob(entity="Q2146908", alias="Russ Cochran"), 0.8
 | |
|     )
 | |
| 
 | |
| 
 | |
| def test_scorer_links():
 | |
|     train_examples = []
 | |
|     nlp = English()
 | |
|     ref1 = nlp("Julia lives in London happily.")
 | |
|     ref1.ents = [
 | |
|         Span(ref1, 0, 1, label="PERSON", kb_id="Q2"),
 | |
|         Span(ref1, 3, 4, label="LOC", kb_id="Q3"),
 | |
|     ]
 | |
|     pred1 = nlp("Julia lives in London happily.")
 | |
|     pred1.ents = [
 | |
|         Span(pred1, 0, 1, label="PERSON", kb_id="Q70"),
 | |
|         Span(pred1, 3, 4, label="LOC", kb_id="Q3"),
 | |
|     ]
 | |
|     train_examples.append(Example(pred1, ref1))
 | |
| 
 | |
|     ref2 = nlp("She loves London.")
 | |
|     ref2.ents = [
 | |
|         Span(ref2, 0, 1, label="PERSON", kb_id="Q2"),
 | |
|         Span(ref2, 2, 3, label="LOC", kb_id="Q13"),
 | |
|     ]
 | |
|     pred2 = nlp("She loves London.")
 | |
|     pred2.ents = [
 | |
|         Span(pred2, 0, 1, label="PERSON", kb_id="Q2"),
 | |
|         Span(pred2, 2, 3, label="LOC", kb_id="NIL"),
 | |
|     ]
 | |
|     train_examples.append(Example(pred2, ref2))
 | |
| 
 | |
|     ref3 = nlp("London is great.")
 | |
|     ref3.ents = [Span(ref3, 0, 1, label="LOC", kb_id="NIL")]
 | |
|     pred3 = nlp("London is great.")
 | |
|     pred3.ents = [Span(pred3, 0, 1, label="LOC", kb_id="NIL")]
 | |
|     train_examples.append(Example(pred3, ref3))
 | |
| 
 | |
|     scores = Scorer().score_links(train_examples, negative_labels=["NIL"])
 | |
|     assert scores["nel_f_per_type"]["PERSON"]["p"] == 1 / 2
 | |
|     assert scores["nel_f_per_type"]["PERSON"]["r"] == 1 / 2
 | |
|     assert scores["nel_f_per_type"]["LOC"]["p"] == 1 / 1
 | |
|     assert scores["nel_f_per_type"]["LOC"]["r"] == 1 / 2
 | |
| 
 | |
|     assert scores["nel_micro_p"] == 2 / 3
 | |
|     assert scores["nel_micro_r"] == 2 / 4
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,config",
 | |
|     [
 | |
|         ("entity_linker", {"@architectures": "spacy.EntityLinker.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
 | |
|         ("entity_linker", {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_legacy_architectures(name, config):
 | |
|     # Ensure that the legacy architectures still work
 | |
|     vector_length = 3
 | |
|     nlp = English()
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp.make_doc(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
 | |
|         mykb.add_alias(
 | |
|             alias="Russ Cochran",
 | |
|             entities=["Q2146908", "Q7381115"],
 | |
|             probabilities=[0.5, 0.5],
 | |
|         )
 | |
|         return mykb
 | |
| 
 | |
|     entity_linker = nlp.add_pipe(name, config={"model": config})
 | |
|     if config["@architectures"] == "spacy.EntityLinker.v1":
 | |
|         assert isinstance(entity_linker, EntityLinker_v1)
 | |
|     else:
 | |
|         assert isinstance(entity_linker, EntityLinker)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     for i in range(2):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "patterns",
 | |
|     [
 | |
|         # perfect case
 | |
|         [{"label": "CHARACTER", "pattern": "Kirby"}],
 | |
|         # typo for false negative
 | |
|         [{"label": "PERSON", "pattern": "Korby"}],
 | |
|         # random stuff for false positive
 | |
|         [{"label": "IS", "pattern": "is"}, {"label": "COLOR", "pattern": "pink"}],
 | |
|     ],
 | |
| )
 | |
| def test_no_gold_ents(patterns):
 | |
|     # test that annotating components work
 | |
|     TRAIN_DATA = [
 | |
|         (
 | |
|             "Kirby is pink",
 | |
|             {
 | |
|                 "links": {(0, 5): {"Q613241": 1.0}},
 | |
|                 "entities": [(0, 5, "CHARACTER")],
 | |
|                 "sent_starts": [1, 0, 0],
 | |
|             },
 | |
|         )
 | |
|     ]
 | |
|     nlp = English()
 | |
|     vector_length = 3
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     # Create a ruler to mark entities
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     # Apply ruler to examples. In a real pipeline this would be an annotating component.
 | |
|     for eg in train_examples:
 | |
|         eg.predicted = ruler(eg.predicted)
 | |
| 
 | |
|     # Entity ruler is no longer needed (initialization below wipes out the
 | |
|     # patterns and causes warnings)
 | |
|     nlp.remove_pipe("entity_ruler")
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias("Kirby", ["Q613241"], [0.9])
 | |
|         # Placeholder
 | |
|         mykb.add_entity(entity="pink", freq=12, entity_vector=[7, 2, -5])
 | |
|         mykb.add_alias("pink", ["pink"], [0.9])
 | |
|         return mykb
 | |
| 
 | |
|     # Create and train the Entity Linker
 | |
|     entity_linker = nlp.add_pipe(
 | |
|         "entity_linker", config={"use_gold_ents": False}, last=True
 | |
|     )
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     assert entity_linker.use_gold_ents is False
 | |
| 
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(2):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # adding additional components that are required for the entity_linker
 | |
|     nlp.add_pipe("sentencizer", first=True)
 | |
| 
 | |
|     # this will run the pipeline on the examples and shouldn't crash
 | |
|     nlp.evaluate(train_examples)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(9575)
 | |
| def test_tokenization_mismatch():
 | |
|     nlp = English()
 | |
|     # include a matching entity so that update isn't skipped
 | |
|     doc1 = Doc(
 | |
|         nlp.vocab,
 | |
|         words=["Kirby", "123456"],
 | |
|         spaces=[True, False],
 | |
|         ents=["B-CHARACTER", "B-CARDINAL"],
 | |
|     )
 | |
|     doc2 = Doc(
 | |
|         nlp.vocab,
 | |
|         words=["Kirby", "123", "456"],
 | |
|         spaces=[True, False, False],
 | |
|         ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"],
 | |
|     )
 | |
| 
 | |
|     eg = Example(doc1, doc2)
 | |
|     train_examples = [eg]
 | |
|     vector_length = 3
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create placeholder KB
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias("Kirby", ["Q613241"], [0.9])
 | |
|         return mykb
 | |
| 
 | |
|     entity_linker = nlp.add_pipe("entity_linker", last=True)
 | |
|     entity_linker.set_kb(create_kb)
 | |
| 
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(2):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     nlp.add_pipe("sentencizer", first=True)
 | |
|     nlp.evaluate(train_examples)
 | |
| 
 | |
| 
 | |
| def test_abstract_kb_instantiation():
 | |
|     """Test whether instantiation of abstract KB base class fails."""
 | |
|     with pytest.raises(TypeError):
 | |
|         KnowledgeBase(None, 3)
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "meet_threshold,config",
 | |
|     [
 | |
|         (False, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
 | |
|         (True, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
 | |
|     """Tests abstention threshold.
 | |
|     meet_threshold (bool): Whether to configure NEL setup so that confidence threshold is met.
 | |
|     config (Dict[str, Any]): NEL architecture config.
 | |
|     """
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     text = "Mahler's Symphony No. 8 was beautiful."
 | |
|     entities = [(0, 6, "PERSON")]
 | |
|     links = {(0, 6): {"Q7304": 1.0}}
 | |
|     sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
 | |
|     entity_id = "Q7304"
 | |
|     doc = nlp(text)
 | |
|     train_examples = [
 | |
|         Example.from_dict(
 | |
|             doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
 | |
|         )
 | |
|     ]
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB
 | |
|         mykb = InMemoryLookupKB(vocab, entity_vector_length=3)
 | |
|         mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias(
 | |
|             alias="Mahler",
 | |
|             entities=[entity_id],
 | |
|             probabilities=[1 if meet_threshold else 0.01],
 | |
|         )
 | |
|         return mykb
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline
 | |
|     entity_linker = nlp.add_pipe(
 | |
|         "entity_linker",
 | |
|         last=True,
 | |
|         config={"threshold": 0.99, "model": config},
 | |
|     )
 | |
|     entity_linker.set_kb(create_kb)  # type: ignore
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     # Add a custom rule-based component to mimick NER
 | |
|     ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
 | |
|     ruler.add_patterns([{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]}])  # type: ignore
 | |
|     doc = nlp(text)
 | |
| 
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL
 | |
| 
 | |
| 
 | |
| def test_span_maker_forward_with_empty():
 | |
|     """The forward pass of the span maker may have a doc with no entities."""
 | |
|     nlp = English()
 | |
|     doc1 = nlp("a b c")
 | |
|     ent = doc1[0:1]
 | |
|     ent.label_ = "X"
 | |
|     doc1.ents = [ent]
 | |
|     # no entities
 | |
|     doc2 = nlp("x y z")
 | |
| 
 | |
|     # just to get a model
 | |
|     span_maker = build_span_maker()
 | |
|     span_maker([doc1, doc2], False)
 |