mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			253 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
"""
 | 
						|
MALT-style dependency parser
 | 
						|
"""
 | 
						|
# cython: profile=True
 | 
						|
# cython: experimental_cpp_class_def=True
 | 
						|
# cython: cdivision=True
 | 
						|
# cython: infer_types=True
 | 
						|
# coding: utf-8
 | 
						|
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
cimport cython
 | 
						|
 | 
						|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
from libc.string cimport memset, memcpy
 | 
						|
from libc.stdlib cimport rand
 | 
						|
from libc.math cimport log, exp, isnan, isinf
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport real_hash64 as hash64
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
						|
from thinc.linear.features cimport ConjunctionExtracter
 | 
						|
from thinc.structs cimport FeatureC, ExampleC
 | 
						|
from thinc.extra.search cimport Beam, MaxViolation
 | 
						|
from thinc.extra.eg cimport Example
 | 
						|
from thinc.extra.mb cimport Minibatch
 | 
						|
 | 
						|
from ..structs cimport TokenC
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..strings cimport StringStore
 | 
						|
from .transition_system cimport TransitionSystem, Transition
 | 
						|
from ..gold cimport GoldParse
 | 
						|
from . import _parse_features
 | 
						|
from ._parse_features cimport CONTEXT_SIZE
 | 
						|
from ._parse_features cimport fill_context
 | 
						|
from .stateclass cimport StateClass
 | 
						|
from .parser cimport Parser
 | 
						|
 | 
						|
 | 
						|
DEBUG = False
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
def get_templates(name):
 | 
						|
    pf = _parse_features
 | 
						|
    if name == 'ner':
 | 
						|
        return pf.ner
 | 
						|
    elif name == 'debug':
 | 
						|
        return pf.unigrams
 | 
						|
    else:
 | 
						|
        return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
 | 
						|
                pf.tree_shape + pf.trigrams)
 | 
						|
 | 
						|
 | 
						|
cdef int BEAM_WIDTH = 16
 | 
						|
cdef weight_t BEAM_DENSITY = 0.001
 | 
						|
 | 
						|
cdef class BeamParser(Parser):
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        self.beam_width = kwargs.get('beam_width', BEAM_WIDTH)
 | 
						|
        self.beam_density = kwargs.get('beam_density', BEAM_DENSITY)
 | 
						|
        Parser.__init__(self, *args, **kwargs)
 | 
						|
 | 
						|
    cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
 | 
						|
        with gil:
 | 
						|
            self._parseC(tokens, length, nr_feat, self.moves.n_moves)
 | 
						|
 | 
						|
    cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1:
 | 
						|
        cdef Beam beam = Beam(self.moves.n_moves, self.beam_width, min_density=self.beam_density)
 | 
						|
        # TODO: How do we handle new labels here? This increases nr_class
 | 
						|
        beam.initialize(self.moves.init_beam_state, length, tokens)
 | 
						|
        beam.check_done(_check_final_state, NULL)
 | 
						|
        if beam.is_done:
 | 
						|
            _cleanup(beam)
 | 
						|
            return 0
 | 
						|
        while not beam.is_done:
 | 
						|
            self._advance_beam(beam, None, False)
 | 
						|
        state = <StateClass>beam.at(0)
 | 
						|
        self.moves.finalize_state(state.c)
 | 
						|
        for i in range(length):
 | 
						|
            tokens[i] = state.c._sent[i]
 | 
						|
        _cleanup(beam)
 | 
						|
 | 
						|
    def update(self, Doc tokens, GoldParse gold_parse, itn=0):
 | 
						|
        self.moves.preprocess_gold(gold_parse)
 | 
						|
        cdef Beam pred = Beam(self.moves.n_moves, self.beam_width)
 | 
						|
        pred.initialize(self.moves.init_beam_state, tokens.length, tokens.c)
 | 
						|
        pred.check_done(_check_final_state, NULL)
 | 
						|
        # Hack for NER
 | 
						|
        for i in range(pred.size):
 | 
						|
            stcls = <StateClass>pred.at(i)
 | 
						|
            self.moves.initialize_state(stcls.c)
 | 
						|
 | 
						|
        cdef Beam gold = Beam(self.moves.n_moves, self.beam_width, min_density=0.0)
 | 
						|
        gold.initialize(self.moves.init_beam_state, tokens.length, tokens.c)
 | 
						|
        gold.check_done(_check_final_state, NULL)
 | 
						|
        violn = MaxViolation()
 | 
						|
        while not pred.is_done and not gold.is_done:
 | 
						|
            # We search separately here, to allow for ambiguity in the gold parse.
 | 
						|
            self._advance_beam(pred, gold_parse, False)
 | 
						|
            self._advance_beam(gold, gold_parse, True)
 | 
						|
            violn.check_crf(pred, gold)
 | 
						|
            if pred.loss > 0 and pred.min_score > (gold.score + self.model.time):
 | 
						|
                break
 | 
						|
        else:
 | 
						|
            # The non-monotonic oracle makes it difficult to ensure final costs are
 | 
						|
            # correct. Therefore do final correction
 | 
						|
            for i in range(pred.size):
 | 
						|
                if is_gold(<StateClass>pred.at(i), gold_parse, self.moves.strings):
 | 
						|
                    pred._states[i].loss = 0.0
 | 
						|
                elif pred._states[i].loss == 0.0:
 | 
						|
                    pred._states[i].loss = 1.0
 | 
						|
            violn.check_crf(pred, gold)
 | 
						|
        if pred.size < 1:
 | 
						|
            raise Exception("No candidates", tokens.length)
 | 
						|
        if gold.size < 1:
 | 
						|
            raise Exception("No gold", tokens.length)
 | 
						|
        if pred.loss == 0:
 | 
						|
            self.model.update_from_histories(self.moves, tokens, [(0.0, [])])
 | 
						|
        elif True:
 | 
						|
            #_check_train_integrity(pred, gold, gold_parse, self.moves)
 | 
						|
            histories = list(zip(violn.p_probs, violn.p_hist)) + \
 | 
						|
                        list(zip(violn.g_probs, violn.g_hist))
 | 
						|
            self.model.update_from_histories(self.moves, tokens, histories, min_grad=0.001**(itn+1))
 | 
						|
        else:
 | 
						|
            self.model.update_from_histories(self.moves, tokens,
 | 
						|
                [(1.0, violn.p_hist[0]), (-1.0, violn.g_hist[0])])
 | 
						|
        _cleanup(pred)
 | 
						|
        _cleanup(gold)
 | 
						|
        return pred.loss
 | 
						|
 | 
						|
    def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
 | 
						|
        cdef atom_t[CONTEXT_SIZE] context
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
 | 
						|
        if False:
 | 
						|
            mb = Minibatch(self.model.widths, beam.size)
 | 
						|
            for i in range(beam.size):
 | 
						|
                stcls = <StateClass>beam.at(i)
 | 
						|
                if stcls.c.is_final():
 | 
						|
                    nr_feat = 0
 | 
						|
                else:
 | 
						|
                    nr_feat = self.model.set_featuresC(context, features, stcls.c)
 | 
						|
                    self.moves.set_valid(beam.is_valid[i], stcls.c)
 | 
						|
                mb.c.push_back(features, nr_feat, beam.costs[i], beam.is_valid[i], 0)
 | 
						|
            self.model(mb)
 | 
						|
            for i in range(beam.size):
 | 
						|
                memcpy(beam.scores[i], mb.c.scores(i), mb.c.nr_out() * sizeof(beam.scores[i][0]))
 | 
						|
        else:
 | 
						|
            for i in range(beam.size):
 | 
						|
                stcls = <StateClass>beam.at(i)
 | 
						|
                if not stcls.is_final():
 | 
						|
                    nr_feat = self.model.set_featuresC(context, features, stcls.c)
 | 
						|
                    self.moves.set_valid(beam.is_valid[i], stcls.c)
 | 
						|
                    self.model.set_scoresC(beam.scores[i], features, nr_feat)
 | 
						|
        if gold is not None:
 | 
						|
            n_gold = 0
 | 
						|
            lines = []
 | 
						|
            for i in range(beam.size):
 | 
						|
                stcls = <StateClass>beam.at(i)
 | 
						|
                if not stcls.c.is_final():
 | 
						|
                    self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
 | 
						|
                    if follow_gold:
 | 
						|
                        for j in range(self.moves.n_moves):
 | 
						|
                            if beam.costs[i][j] >= 1:
 | 
						|
                                beam.is_valid[i][j] = 0
 | 
						|
                                lines.append((stcls.B(0), stcls.B(1),
 | 
						|
                                    stcls.B_(0).ent_iob, stcls.B_(1).ent_iob,
 | 
						|
                                    stcls.B_(1).sent_start,
 | 
						|
                                    j,
 | 
						|
                                    beam.is_valid[i][j], 'set invalid',
 | 
						|
                                    beam.costs[i][j], self.moves.c[j].move, self.moves.c[j].label))
 | 
						|
                            n_gold += 1 if beam.is_valid[i][j] else 0
 | 
						|
            if follow_gold and n_gold == 0:
 | 
						|
                raise Exception("No gold")
 | 
						|
        if follow_gold:
 | 
						|
            beam.advance(_transition_state, NULL, <void*>self.moves.c)
 | 
						|
        else:
 | 
						|
            beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
 | 
						|
        beam.check_done(_check_final_state, NULL)
 | 
						|
 | 
						|
 | 
						|
# These are passed as callbacks to thinc.search.Beam
 | 
						|
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
 | 
						|
    dest = <StateClass>_dest
 | 
						|
    src = <StateClass>_src
 | 
						|
    moves = <const Transition*>_moves
 | 
						|
    dest.clone(src)
 | 
						|
    moves[clas].do(dest.c, moves[clas].label)
 | 
						|
 | 
						|
 | 
						|
cdef int _check_final_state(void* _state, void* extra_args) except -1:
 | 
						|
    return (<StateClass>_state).is_final()
 | 
						|
 | 
						|
 | 
						|
def _cleanup(Beam beam):
 | 
						|
    for i in range(beam.width):
 | 
						|
        Py_XDECREF(<PyObject*>beam._states[i].content)
 | 
						|
        Py_XDECREF(<PyObject*>beam._parents[i].content)
 | 
						|
 | 
						|
 | 
						|
cdef hash_t _hash_state(void* _state, void* _) except 0:
 | 
						|
    state = <StateClass>_state
 | 
						|
    if state.c.is_final():
 | 
						|
        return 1
 | 
						|
    else:
 | 
						|
        return state.c.hash()
 | 
						|
 | 
						|
 | 
						|
def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, TransitionSystem moves):
 | 
						|
    for i in range(pred.size):
 | 
						|
        if not pred._states[i].is_done or pred._states[i].loss == 0:
 | 
						|
            continue
 | 
						|
        state = <StateClass>pred.at(i)
 | 
						|
        if is_gold(state, gold_parse, moves.strings) == True:
 | 
						|
            for dep in gold_parse.orig_annot:
 | 
						|
                print(dep[1], dep[3], dep[4])
 | 
						|
            print("Cost", pred._states[i].loss)
 | 
						|
            for j in range(gold_parse.length):
 | 
						|
                print(gold_parse.orig_annot[j][1], state.H(j), moves.strings[state.safe_get(j).dep])
 | 
						|
            acts = [moves.c[clas].move for clas in pred.histories[i]]
 | 
						|
            labels = [moves.c[clas].label for clas in pred.histories[i]]
 | 
						|
            print([moves.move_name(move, label) for move, label in zip(acts, labels)])
 | 
						|
            raise Exception("Predicted state is gold-standard")
 | 
						|
    for i in range(gold.size):
 | 
						|
        if not gold._states[i].is_done:
 | 
						|
            continue
 | 
						|
        state = <StateClass>gold.at(i)
 | 
						|
        if is_gold(state, gold_parse, moves.strings) == False:
 | 
						|
            print("Truth")
 | 
						|
            for dep in gold_parse.orig_annot:
 | 
						|
                print(dep[1], dep[3], dep[4])
 | 
						|
            print("Predicted good")
 | 
						|
            for j in range(gold_parse.length):
 | 
						|
                print(gold_parse.orig_annot[j][1], state.H(j), moves.strings[state.safe_get(j).dep])
 | 
						|
            raise Exception("Gold parse is not gold-standard")
 | 
						|
 | 
						|
 | 
						|
def is_gold(StateClass state, GoldParse gold, StringStore strings):
 | 
						|
    predicted = set()
 | 
						|
    truth = set()
 | 
						|
    for i in range(gold.length):
 | 
						|
        if gold.cand_to_gold[i] is None:
 | 
						|
            continue
 | 
						|
        if state.safe_get(i).dep:
 | 
						|
            predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
 | 
						|
        else:
 | 
						|
            predicted.add((i, state.H(i), 'ROOT'))
 | 
						|
        id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
 | 
						|
        truth.add((id_, head, dep))
 | 
						|
    return truth == predicted
 |