mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			122 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from ..parts_of_speech cimport NOUN, PROPN, PRON, VERB, AUX
 | 
						|
 | 
						|
 | 
						|
def english_noun_chunks(obj):
 | 
						|
    """
 | 
						|
    Detect base noun phrases from a dependency parse.
 | 
						|
    Works on both Doc and Span.
 | 
						|
    """
 | 
						|
    labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', 'dative', 'appos',
 | 
						|
              'attr', 'ROOT']
 | 
						|
    doc = obj.doc # Ensure works on both Doc and Span.
 | 
						|
    np_deps = [doc.vocab.strings[label] for label in labels]
 | 
						|
    conj = doc.vocab.strings['conj']
 | 
						|
    np_label = doc.vocab.strings['NP']
 | 
						|
    seen = set()
 | 
						|
    for i, word in enumerate(obj):
 | 
						|
        if word.pos not in (NOUN, PROPN, PRON):
 | 
						|
            continue
 | 
						|
        # Prevent nested chunks from being produced
 | 
						|
        if word.i in seen:
 | 
						|
            continue
 | 
						|
        if word.dep in np_deps:
 | 
						|
            if any(w.i in seen for w in word.subtree):
 | 
						|
                continue
 | 
						|
            seen.update(j for j in range(word.left_edge.i, word.i+1))
 | 
						|
            yield word.left_edge.i, word.i+1, np_label
 | 
						|
        elif word.dep == conj:
 | 
						|
            head = word.head
 | 
						|
            while head.dep == conj and head.head.i < head.i:
 | 
						|
                head = head.head
 | 
						|
            # If the head is an NP, and we're coordinated to it, we're an NP
 | 
						|
            if head.dep in np_deps:
 | 
						|
                if any(w.i in seen for w in word.subtree):
 | 
						|
                    continue
 | 
						|
                seen.update(j for j in range(word.left_edge.i, word.i+1))
 | 
						|
                yield word.left_edge.i, word.i+1, np_label
 | 
						|
 | 
						|
 | 
						|
# this iterator extracts spans headed by NOUNs starting from the left-most
 | 
						|
# syntactic dependent until the NOUN itself
 | 
						|
# for close apposition and measurement construction, the span is sometimes
 | 
						|
# extended to the right of the NOUN
 | 
						|
# example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not
 | 
						|
# just "eine Tasse", same for "das Thema Familie"
 | 
						|
def german_noun_chunks(obj):
 | 
						|
    labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app']
 | 
						|
    doc = obj.doc # Ensure works on both Doc and Span.
 | 
						|
    np_label = doc.vocab.strings['NP']
 | 
						|
    np_deps = set(doc.vocab.strings[label] for label in labels)
 | 
						|
    close_app = doc.vocab.strings['nk']
 | 
						|
 | 
						|
    rbracket = 0
 | 
						|
    for i, word in enumerate(obj):
 | 
						|
        if i < rbracket:
 | 
						|
            continue
 | 
						|
        if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
 | 
						|
            rbracket = word.i+1
 | 
						|
            # try to extend the span to the right
 | 
						|
            # to capture close apposition/measurement constructions
 | 
						|
            for rdep in doc[word.i].rights:
 | 
						|
                if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app:
 | 
						|
                    rbracket = rdep.i+1
 | 
						|
            yield word.left_edge.i, rbracket, np_label
 | 
						|
 | 
						|
 | 
						|
def es_noun_chunks(obj):
 | 
						|
 | 
						|
    doc = obj.doc
 | 
						|
    np_label = doc.vocab.strings['NP']
 | 
						|
 | 
						|
    left_labels = ['det', 'fixed', 'neg'] #['nunmod', 'det', 'appos', 'fixed']
 | 
						|
    right_labels = ['flat', 'fixed', 'compound', 'neg']
 | 
						|
    stop_labels = ['punct']
 | 
						|
 | 
						|
    np_left_deps = [doc.vocab.strings[label] for label in left_labels]
 | 
						|
    np_right_deps = [doc.vocab.strings[label] for label in right_labels]
 | 
						|
    stop_deps = [doc.vocab.strings[label] for label in stop_labels]
 | 
						|
 | 
						|
    def next_token(token):
 | 
						|
        try:
 | 
						|
            return token.nbor()
 | 
						|
        except:
 | 
						|
            return None
 | 
						|
 | 
						|
    def noun_bounds(root):
 | 
						|
 | 
						|
        def is_verb_token(token):
 | 
						|
            return token.pos in [VERB, AUX]
 | 
						|
 | 
						|
        left_bound = root
 | 
						|
        for token in reversed(list(root.lefts)):
 | 
						|
            if token.dep in np_left_deps:
 | 
						|
                left_bound = token
 | 
						|
 | 
						|
        right_bound = root
 | 
						|
        for token in root.rights:
 | 
						|
            if (token.dep in np_right_deps):
 | 
						|
                left, right = noun_bounds(token)
 | 
						|
 | 
						|
                if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps, doc[left_bound.i: right.i])):
 | 
						|
                    break
 | 
						|
                else:
 | 
						|
                    right_bound = right
 | 
						|
 | 
						|
        return left_bound, right_bound
 | 
						|
 | 
						|
 | 
						|
    token = doc[0]
 | 
						|
    while token and token.i < len(doc):
 | 
						|
        if token.pos in [PROPN, NOUN, PRON]:
 | 
						|
            left, right = noun_bounds(token)
 | 
						|
            yield left.i, right.i+1, np_label
 | 
						|
            token = right
 | 
						|
        token = next_token(token)
 | 
						|
 | 
						|
 | 
						|
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks,
 | 
						|
            None: english_noun_chunks, '': english_noun_chunks}
 |