mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
		
			
				
	
	
		
			309 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import srsly
 | |
| from typing import List, Dict, Union, Iterable, Any, Optional
 | |
| from pathlib import Path
 | |
| 
 | |
| from .pipe import Pipe
 | |
| from ..errors import Errors
 | |
| from ..training import validate_examples
 | |
| from ..language import Language
 | |
| from ..matcher import Matcher
 | |
| from ..scorer import Scorer
 | |
| from ..symbols import IDS, TAG, POS, MORPH, LEMMA
 | |
| from ..tokens import Doc, Span
 | |
| from ..tokens._retokenize import normalize_token_attrs, set_token_attrs
 | |
| from ..vocab import Vocab
 | |
| from ..util import SimpleFrozenList
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| MatcherPatternType = List[Dict[Union[int, str], Any]]
 | |
| AttributeRulerPatternType = Dict[str, Union[MatcherPatternType, Dict, int]]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "attribute_ruler", default_config={"pattern_dicts": None, "validate": False}
 | |
| )
 | |
| def make_attribute_ruler(
 | |
|     nlp: Language,
 | |
|     name: str,
 | |
|     pattern_dicts: Optional[Iterable[AttributeRulerPatternType]],
 | |
|     validate: bool,
 | |
| ):
 | |
|     return AttributeRuler(
 | |
|         nlp.vocab, name, pattern_dicts=pattern_dicts, validate=validate
 | |
|     )
 | |
| 
 | |
| 
 | |
| class AttributeRuler(Pipe):
 | |
|     """Set token-level attributes for tokens matched by Matcher patterns.
 | |
|     Additionally supports importing patterns from tag maps and morph rules.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/attributeruler
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         name: str = "attribute_ruler",
 | |
|         *,
 | |
|         pattern_dicts: Optional[Iterable[AttributeRulerPatternType]] = None,
 | |
|         validate: bool = False,
 | |
|     ) -> None:
 | |
|         """Initialize the AttributeRuler.
 | |
| 
 | |
|         vocab (Vocab): The vocab.
 | |
|         name (str): The pipe name. Defaults to "attribute_ruler".
 | |
|         pattern_dicts (Iterable[Dict]): A list of pattern dicts with the keys as
 | |
|         the arguments to AttributeRuler.add (`patterns`/`attrs`/`index`) to add
 | |
|         as patterns.
 | |
| 
 | |
|         RETURNS (AttributeRuler): The AttributeRuler component.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#init
 | |
|         """
 | |
|         self.name = name
 | |
|         self.vocab = vocab
 | |
|         self.matcher = Matcher(self.vocab, validate=validate)
 | |
|         self.attrs = []
 | |
|         self._attrs_unnormed = []  # store for reference
 | |
|         self.indices = []
 | |
| 
 | |
|         if pattern_dicts:
 | |
|             self.add_patterns(pattern_dicts)
 | |
| 
 | |
|     def __call__(self, doc: Doc) -> Doc:
 | |
|         """Apply the AttributeRuler to a Doc and set all attribute exceptions.
 | |
| 
 | |
|         doc (Doc): The document to process.
 | |
|         RETURNS (Doc): The processed Doc.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#call
 | |
|         """
 | |
|         matches = sorted(self.matcher(doc))
 | |
| 
 | |
|         for match_id, start, end in matches:
 | |
|             span = Span(doc, start, end, label=match_id)
 | |
|             attrs = self.attrs[span.label]
 | |
|             index = self.indices[span.label]
 | |
|             try:
 | |
|                 token = span[index]
 | |
|             except IndexError:
 | |
|                 raise ValueError(
 | |
|                     Errors.E1001.format(
 | |
|                         patterns=self.matcher.get(span.label),
 | |
|                         span=[t.text for t in span],
 | |
|                         index=index,
 | |
|                     )
 | |
|                 ) from None
 | |
|             set_token_attrs(token, attrs)
 | |
|         return doc
 | |
| 
 | |
|     def pipe(self, stream, *, batch_size=128):
 | |
|         """Apply the pipe to a stream of documents. This usually happens under
 | |
|         the hood when the nlp object is called on a text and all components are
 | |
|         applied to the Doc.
 | |
| 
 | |
|         stream (Iterable[Doc]): A stream of documents.
 | |
|         batch_size (int): The number of documents to buffer.
 | |
|         YIELDS (Doc): Processed documents in order.
 | |
| 
 | |
|         DOCS: https://spacy.io/attributeruler/pipe#pipe
 | |
|         """
 | |
|         for doc in stream:
 | |
|             doc = self(doc)
 | |
|             yield doc
 | |
| 
 | |
|     def load_from_tag_map(
 | |
|         self, tag_map: Dict[str, Dict[Union[int, str], Union[int, str]]]
 | |
|     ) -> None:
 | |
|         """Load attribute ruler patterns from a tag map.
 | |
| 
 | |
|         tag_map (dict): The tag map that maps fine-grained tags to
 | |
|             coarse-grained tags and morphological features.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules
 | |
|         """
 | |
|         for tag, attrs in tag_map.items():
 | |
|             pattern = [{"TAG": tag}]
 | |
|             attrs, morph_attrs = _split_morph_attrs(attrs)
 | |
|             morph = self.vocab.morphology.add(morph_attrs)
 | |
|             attrs["MORPH"] = self.vocab.strings[morph]
 | |
|             self.add([pattern], attrs)
 | |
| 
 | |
|     def load_from_morph_rules(
 | |
|         self, morph_rules: Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]
 | |
|     ) -> None:
 | |
|         """Load attribute ruler patterns from morph rules.
 | |
| 
 | |
|         morph_rules (dict): The morph rules that map token text and
 | |
|             fine-grained tags to coarse-grained tags, lemmas and morphological
 | |
|             features.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules
 | |
|         """
 | |
|         for tag in morph_rules:
 | |
|             for word in morph_rules[tag]:
 | |
|                 pattern = [{"ORTH": word, "TAG": tag}]
 | |
|                 attrs = morph_rules[tag][word]
 | |
|                 attrs, morph_attrs = _split_morph_attrs(attrs)
 | |
|                 morph = self.vocab.morphology.add(morph_attrs)
 | |
|                 attrs["MORPH"] = self.vocab.strings[morph]
 | |
|                 self.add([pattern], attrs)
 | |
| 
 | |
|     def add(
 | |
|         self, patterns: Iterable[MatcherPatternType], attrs: Dict, index: int = 0
 | |
|     ) -> None:
 | |
|         """Add Matcher patterns for tokens that should be modified with the
 | |
|         provided attributes. The token at the specified index within the
 | |
|         matched span will be assigned the attributes.
 | |
| 
 | |
|         patterns (Iterable[List[Dict]]): A list of Matcher patterns.
 | |
|         attrs (Dict): The attributes to assign to the target token in the
 | |
|             matched span.
 | |
|         index (int): The index of the token in the matched span to modify. May
 | |
|             be negative to index from the end of the span. Defaults to 0.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#add
 | |
|         """
 | |
|         self.matcher.add(len(self.attrs), patterns)
 | |
|         self._attrs_unnormed.append(attrs)
 | |
|         attrs = normalize_token_attrs(self.vocab, attrs)
 | |
|         self.attrs.append(attrs)
 | |
|         self.indices.append(index)
 | |
| 
 | |
|     def add_patterns(self, pattern_dicts: Iterable[AttributeRulerPatternType]) -> None:
 | |
|         """Add patterns from a list of pattern dicts with the keys as the
 | |
|         arguments to AttributeRuler.add.
 | |
|         pattern_dicts (Iterable[dict]): A list of pattern dicts with the keys
 | |
|             as the arguments to AttributeRuler.add (patterns/attrs/index) to
 | |
|             add as patterns.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#add_patterns
 | |
|         """
 | |
|         for p in pattern_dicts:
 | |
|             self.add(**p)
 | |
| 
 | |
|     @property
 | |
|     def patterns(self) -> List[AttributeRulerPatternType]:
 | |
|         """All the added patterns."""
 | |
|         all_patterns = []
 | |
|         for i in range(len(self.attrs)):
 | |
|             p = {}
 | |
|             p["patterns"] = self.matcher.get(i)[1]
 | |
|             p["attrs"] = self._attrs_unnormed[i]
 | |
|             p["index"] = self.indices[i]
 | |
|             all_patterns.append(p)
 | |
|         return all_patterns
 | |
| 
 | |
|     def score(self, examples, **kwargs):
 | |
|         """Score a batch of examples.
 | |
| 
 | |
|         examples (Iterable[Example]): The examples to score.
 | |
|         RETURNS (Dict[str, Any]): The scores, produced by
 | |
|             Scorer.score_token_attr for the attributes "tag", "pos", "morph"
 | |
|             and "lemma" for the target token attributes.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/tagger#score
 | |
|         """
 | |
|         validate_examples(examples, "AttributeRuler.score")
 | |
|         results = {}
 | |
|         attrs = set()
 | |
|         for token_attrs in self.attrs:
 | |
|             attrs.update(token_attrs)
 | |
|         for attr in attrs:
 | |
|             if attr == TAG:
 | |
|                 results.update(Scorer.score_token_attr(examples, "tag", **kwargs))
 | |
|             elif attr == POS:
 | |
|                 results.update(Scorer.score_token_attr(examples, "pos", **kwargs))
 | |
|             elif attr == MORPH:
 | |
|                 results.update(Scorer.score_token_attr(examples, "morph", **kwargs))
 | |
|             elif attr == LEMMA:
 | |
|                 results.update(Scorer.score_token_attr(examples, "lemma", **kwargs))
 | |
|         return results
 | |
| 
 | |
|     def to_bytes(self, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
 | |
|         """Serialize the AttributeRuler to a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#to_bytes
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["vocab"] = self.vocab.to_bytes
 | |
|         serialize["patterns"] = lambda: srsly.msgpack_dumps(self.patterns)
 | |
|         return util.to_bytes(serialize, exclude)
 | |
| 
 | |
|     def from_bytes(
 | |
|         self, bytes_data: bytes, exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ):
 | |
|         """Load the AttributeRuler from a bytestring.
 | |
| 
 | |
|         bytes_data (bytes): The data to load.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         returns (AttributeRuler): The loaded object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#from_bytes
 | |
|         """
 | |
| 
 | |
|         def load_patterns(b):
 | |
|             self.add_patterns(srsly.msgpack_loads(b))
 | |
| 
 | |
|         deserialize = {
 | |
|             "vocab": lambda b: self.vocab.from_bytes(b),
 | |
|             "patterns": load_patterns,
 | |
|         }
 | |
|         util.from_bytes(bytes_data, deserialize, exclude)
 | |
| 
 | |
|         return self
 | |
| 
 | |
|     def to_disk(
 | |
|         self, path: Union[Path, str], exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ) -> None:
 | |
|         """Serialize the AttributeRuler to disk.
 | |
| 
 | |
|         path (Union[Path, str]): A path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#to_disk
 | |
|         """
 | |
|         serialize = {
 | |
|             "vocab": lambda p: self.vocab.to_disk(p),
 | |
|             "patterns": lambda p: srsly.write_msgpack(p, self.patterns),
 | |
|         }
 | |
|         util.to_disk(path, serialize, exclude)
 | |
| 
 | |
|     def from_disk(
 | |
|         self, path: Union[Path, str], exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ) -> None:
 | |
|         """Load the AttributeRuler from disk.
 | |
| 
 | |
|         path (Union[Path, str]): A path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         DOCS: https://nightly.spacy.io/api/attributeruler#from_disk
 | |
|         """
 | |
| 
 | |
|         def load_patterns(p):
 | |
|             self.add_patterns(srsly.read_msgpack(p))
 | |
| 
 | |
|         deserialize = {
 | |
|             "vocab": lambda p: self.vocab.from_disk(p),
 | |
|             "patterns": load_patterns,
 | |
|         }
 | |
|         util.from_disk(path, deserialize, exclude)
 | |
| 
 | |
|         return self
 | |
| 
 | |
| 
 | |
| def _split_morph_attrs(attrs):
 | |
|     """Split entries from a tag map or morph rules dict into to two dicts, one
 | |
|     with the token-level features (POS, LEMMA) and one with the remaining
 | |
|     features, which are presumed to be individual MORPH features."""
 | |
|     other_attrs = {}
 | |
|     morph_attrs = {}
 | |
|     for k, v in attrs.items():
 | |
|         if k in "_" or k in IDS.keys() or k in IDS.values():
 | |
|             other_attrs[k] = v
 | |
|         else:
 | |
|             morph_attrs[k] = v
 | |
|     return other_attrs, morph_attrs
 |