mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
		
			
				
	
	
		
			338 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, profile=True, binding=True
 | |
| from typing import Optional
 | |
| import srsly
 | |
| from thinc.api import SequenceCategoricalCrossentropy, Model, Config
 | |
| from itertools import islice
 | |
| 
 | |
| from ..tokens.doc cimport Doc
 | |
| from ..vocab cimport Vocab
 | |
| from ..morphology cimport Morphology
 | |
| 
 | |
| from ..parts_of_speech import IDS as POS_IDS
 | |
| from ..symbols import POS
 | |
| from ..language import Language
 | |
| from ..errors import Errors
 | |
| from .pipe import deserialize_config
 | |
| from .tagger import Tagger
 | |
| from .. import util
 | |
| from ..scorer import Scorer
 | |
| from ..training import validate_examples
 | |
| 
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.Tagger.v1"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.Tok2Vec.v1"
 | |
| 
 | |
| [model.tok2vec.embed]
 | |
| @architectures = "spacy.CharacterEmbed.v1"
 | |
| width = 128
 | |
| rows = 7000
 | |
| nM = 64
 | |
| nC = 8
 | |
| 
 | |
| [model.tok2vec.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v1"
 | |
| width = 128
 | |
| depth = 4
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| """
 | |
| 
 | |
| DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "morphologizer",
 | |
|     assigns=["token.morph", "token.pos"],
 | |
|     default_config={"model": DEFAULT_MORPH_MODEL},
 | |
|     scores=["pos_acc", "morph_acc", "morph_per_feat"],
 | |
|     default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5},
 | |
| )
 | |
| def make_morphologizer(
 | |
|     nlp: Language,
 | |
|     model: Model,
 | |
|     name: str,
 | |
| ):
 | |
|     return Morphologizer(nlp.vocab, model, name)
 | |
| 
 | |
| 
 | |
| class Morphologizer(Tagger):
 | |
|     POS_FEAT = "POS"
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "morphologizer",
 | |
|         *,
 | |
|         labels_morph: Optional[dict] = None,
 | |
|         labels_pos: Optional[dict] = None,
 | |
|     ):
 | |
|         """Initialize a morphologizer.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name, used to add entries to the
 | |
|             losses during training.
 | |
|         labels_morph (dict): Mapping of morph + POS tags to morph labels.
 | |
|         labels_pos (dict): Mapping of morph + POS tags to POS tags.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#init
 | |
|         """
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self._rehearsal_model = None
 | |
|         # to be able to set annotations without string operations on labels,
 | |
|         # store mappings from morph+POS labels to token-level annotations:
 | |
|         # 1) labels_morph stores a mapping from morph+POS->morph
 | |
|         # 2) labels_pos stores a mapping from morph+POS->POS
 | |
|         cfg = {"labels_morph": labels_morph or {}, "labels_pos": labels_pos or {}}
 | |
|         self.cfg = dict(sorted(cfg.items()))
 | |
|         # add mappings for empty morph
 | |
|         self.cfg["labels_morph"][Morphology.EMPTY_MORPH] = Morphology.EMPTY_MORPH
 | |
|         self.cfg["labels_pos"][Morphology.EMPTY_MORPH] = POS_IDS[""]
 | |
| 
 | |
|     @property
 | |
|     def labels(self):
 | |
|         """RETURNS (Tuple[str]): The labels currently added to the component."""
 | |
|         return tuple(self.cfg["labels_morph"].keys())
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         """Add a new label to the pipe.
 | |
| 
 | |
|         label (str): The label to add.
 | |
|         RETURNS (int): 0 if label is already present, otherwise 1.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#add_label
 | |
|         """
 | |
|         if not isinstance(label, str):
 | |
|             raise ValueError(Errors.E187)
 | |
|         if label in self.labels:
 | |
|             return 0
 | |
|         self._allow_extra_label()
 | |
|         # normalize label
 | |
|         norm_label = self.vocab.morphology.normalize_features(label)
 | |
|         # extract separate POS and morph tags
 | |
|         label_dict = Morphology.feats_to_dict(label)
 | |
|         pos = label_dict.get(self.POS_FEAT, "")
 | |
|         if self.POS_FEAT in label_dict:
 | |
|             label_dict.pop(self.POS_FEAT)
 | |
|         # normalize morph string and add to morphology table
 | |
|         norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
 | |
|         # add label mappings
 | |
|         if norm_label not in self.cfg["labels_morph"]:
 | |
|             self.cfg["labels_morph"][norm_label] = norm_morph
 | |
|             self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
 | |
|         return 1
 | |
| 
 | |
|     def begin_training(self, get_examples, *, pipeline=None, sgd=None):
 | |
|         """Initialize the pipe for training, using a representative set
 | |
|         of data examples.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects.
 | |
|         pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
 | |
|             components that this component is part of. Corresponds to
 | |
|             nlp.pipeline.
 | |
|         sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
 | |
|             create_optimizer if it doesn't exist.
 | |
|         RETURNS (thinc.api.Optimizer): The optimizer.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#begin_training
 | |
|         """
 | |
|         self._ensure_examples(get_examples)
 | |
|         # First, fetch all labels from the data
 | |
|         for example in get_examples():
 | |
|             for i, token in enumerate(example.reference):
 | |
|                 pos = token.pos_
 | |
|                 morph = token.morph_
 | |
|                 # create and add the combined morph+POS label
 | |
|                 morph_dict = Morphology.feats_to_dict(morph)
 | |
|                 if pos:
 | |
|                     morph_dict[self.POS_FEAT] = pos
 | |
|                 norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
 | |
|                 # add label->morph and label->POS mappings
 | |
|                 if norm_label not in self.cfg["labels_morph"]:
 | |
|                     self.cfg["labels_morph"][norm_label] = morph
 | |
|                     self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
 | |
|         if len(self.labels) <= 1:
 | |
|             raise ValueError(Errors.E143.format(name=self.name))
 | |
|         doc_sample = []
 | |
|         label_sample = []
 | |
|         for example in islice(get_examples(), 10):
 | |
|             gold_array = []
 | |
|             for i, token in enumerate(example.reference):
 | |
|                 pos = token.pos_
 | |
|                 morph = token.morph_
 | |
|                 morph_dict = Morphology.feats_to_dict(morph)
 | |
|                 if pos:
 | |
|                     morph_dict[self.POS_FEAT] = pos
 | |
|                 norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
 | |
|                 gold_array.append([1.0 if label == norm_label else 0.0 for label in self.labels])
 | |
|             doc_sample.append(example.x)
 | |
|             label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
 | |
|         assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         self.model.initialize(X=doc_sample, Y=label_sample)
 | |
|         if sgd is None:
 | |
|             sgd = self.create_optimizer()
 | |
|         return sgd
 | |
| 
 | |
|     def set_annotations(self, docs, batch_tag_ids):
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#set_annotations
 | |
|         """
 | |
|         if isinstance(docs, Doc):
 | |
|             docs = [docs]
 | |
|         cdef Doc doc
 | |
|         cdef Vocab vocab = self.vocab
 | |
|         for i, doc in enumerate(docs):
 | |
|             doc_tag_ids = batch_tag_ids[i]
 | |
|             if hasattr(doc_tag_ids, "get"):
 | |
|                 doc_tag_ids = doc_tag_ids.get()
 | |
|             for j, tag_id in enumerate(doc_tag_ids):
 | |
|                 morph = self.labels[tag_id]
 | |
|                 doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"][morph])
 | |
|                 doc.c[j].pos = self.cfg["labels_pos"][morph]
 | |
| 
 | |
|             doc.is_morphed = True
 | |
| 
 | |
|     def get_loss(self, examples, scores):
 | |
|         """Find the loss and gradient of loss for the batch of documents and
 | |
|         their predicted scores.
 | |
| 
 | |
|         examples (Iterable[Examples]): The batch of examples.
 | |
|         scores: Scores representing the model's predictions.
 | |
|         RETUTNRS (Tuple[float, float]): The loss and the gradient.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
 | |
|         """
 | |
|         validate_examples(examples, "Morphologizer.get_loss")
 | |
|         loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
 | |
|         truths = []
 | |
|         for eg in examples:
 | |
|             eg_truths = []
 | |
|             pos_tags = eg.get_aligned("POS", as_string=True)
 | |
|             morphs = eg.get_aligned("MORPH", as_string=True)
 | |
|             for i in range(len(morphs)):
 | |
|                 pos = pos_tags[i]
 | |
|                 morph = morphs[i]
 | |
|                 # POS may align (same value for multiple tokens) when morph
 | |
|                 # doesn't, so if either is None, treat both as None here so that
 | |
|                 # truths doesn't end up with an unknown morph+POS combination
 | |
|                 if pos is None or morph is None:
 | |
|                     pos = None
 | |
|                     morph = None
 | |
|                 label_dict = Morphology.feats_to_dict(morph)
 | |
|                 if pos:
 | |
|                     label_dict[self.POS_FEAT] = pos
 | |
|                 label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
 | |
|                 eg_truths.append(label)
 | |
|             truths.append(eg_truths)
 | |
|         d_scores, loss = loss_func(scores, truths)
 | |
|         if self.model.ops.xp.isnan(loss):
 | |
|             raise ValueError("nan value when computing loss")
 | |
|         return float(loss), d_scores
 | |
| 
 | |
|     def score(self, examples, **kwargs):
 | |
|         """Score a batch of examples.
 | |
| 
 | |
|         examples (Iterable[Example]): The examples to score.
 | |
|         RETURNS (Dict[str, Any]): The scores, produced by
 | |
|             Scorer.score_token_attr for the attributes "pos" and "morph" and
 | |
|             Scorer.score_token_attr_per_feat for the attribute "morph".
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#score
 | |
|         """
 | |
|         validate_examples(examples, "Morphologizer.score")
 | |
|         results = {}
 | |
|         results.update(Scorer.score_token_attr(examples, "pos", **kwargs))
 | |
|         results.update(Scorer.score_token_attr(examples, "morph", **kwargs))
 | |
|         results.update(Scorer.score_token_attr_per_feat(examples,
 | |
|             "morph", **kwargs))
 | |
|         return results
 | |
| 
 | |
|     def to_bytes(self, *, exclude=tuple()):
 | |
|         """Serialize the pipe to a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#to_bytes
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["model"] = self.model.to_bytes
 | |
|         serialize["vocab"] = self.vocab.to_bytes
 | |
|         serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | |
|         return util.to_bytes(serialize, exclude)
 | |
| 
 | |
|     def from_bytes(self, bytes_data, *, exclude=tuple()):
 | |
|         """Load the pipe from a bytestring.
 | |
| 
 | |
|         bytes_data (bytes): The serialized pipe.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Morphologizer): The loaded Morphologizer.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#from_bytes
 | |
|         """
 | |
|         def load_model(b):
 | |
|             try:
 | |
|                 self.model.from_bytes(b)
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {
 | |
|             "vocab": lambda b: self.vocab.from_bytes(b),
 | |
|             "cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
 | |
|             "model": lambda b: load_model(b),
 | |
|         }
 | |
|         util.from_bytes(bytes_data, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
|     def to_disk(self, path, *, exclude=tuple()):
 | |
|         """Serialize the pipe to disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#to_disk
 | |
|         """
 | |
|         serialize = {
 | |
|             "vocab": lambda p: self.vocab.to_disk(p),
 | |
|             "model": lambda p: p.open("wb").write(self.model.to_bytes()),
 | |
|             "cfg": lambda p: srsly.write_json(p, self.cfg),
 | |
|         }
 | |
|         util.to_disk(path, serialize, exclude)
 | |
| 
 | |
|     def from_disk(self, path, *, exclude=tuple()):
 | |
|         """Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Morphologizer): The modified Morphologizer object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/morphologizer#from_disk
 | |
|         """
 | |
|         def load_model(p):
 | |
|             with p.open("rb") as file_:
 | |
|                 try:
 | |
|                     self.model.from_bytes(file_.read())
 | |
|                 except AttributeError:
 | |
|                     raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {
 | |
|             "vocab": lambda p: self.vocab.from_disk(p),
 | |
|             "cfg": lambda p: self.cfg.update(deserialize_config(p)),
 | |
|             "model": load_model,
 | |
|         }
 | |
|         util.from_disk(path, deserialize, exclude)
 | |
|         return self
 |