mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Add regression test for issue 10643 * Improve overlapping terms testcase * Fix removing overlapping terms in phrase matcher (#10643)
		
			
				
	
	
		
			358 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True, profile=True
 | 
						|
from libc.stdint cimport uintptr_t
 | 
						|
from preshed.maps cimport map_init, map_set, map_get, map_clear, map_iter
 | 
						|
 | 
						|
import warnings
 | 
						|
 | 
						|
from ..attrs cimport ORTH, POS, TAG, DEP, LEMMA, MORPH
 | 
						|
from ..attrs import IDS
 | 
						|
from ..structs cimport TokenC
 | 
						|
from ..tokens.token cimport Token
 | 
						|
from ..tokens.span cimport Span
 | 
						|
from ..typedefs cimport attr_t
 | 
						|
 | 
						|
from ..schemas import TokenPattern
 | 
						|
from ..errors import Errors, Warnings
 | 
						|
 | 
						|
 | 
						|
cdef class PhraseMatcher:
 | 
						|
    """Efficiently match large terminology lists. While the `Matcher` matches
 | 
						|
    sequences based on lists of token descriptions, the `PhraseMatcher` accepts
 | 
						|
    match patterns in the form of `Doc` objects.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/phrasematcher
 | 
						|
    USAGE: https://spacy.io/usage/rule-based-matching#phrasematcher
 | 
						|
 | 
						|
    Adapted from FlashText: https://github.com/vi3k6i5/flashtext
 | 
						|
    MIT License (see `LICENSE`)
 | 
						|
    Copyright (c) 2017 Vikash Singh (vikash.duliajan@gmail.com)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, Vocab vocab, attr="ORTH", validate=False):
 | 
						|
        """Initialize the PhraseMatcher.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        attr (int / str): Token attribute to match on.
 | 
						|
        validate (bool): Perform additional validation when patterns are added.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/phrasematcher#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self._callbacks = {}
 | 
						|
        self._docs = {}
 | 
						|
        self._validate = validate
 | 
						|
 | 
						|
        self.mem = Pool()
 | 
						|
        self.c_map = <MapStruct*>self.mem.alloc(1, sizeof(MapStruct))
 | 
						|
        self._terminal_hash = 826361138722620965
 | 
						|
        map_init(self.mem, self.c_map, 8)
 | 
						|
 | 
						|
        if isinstance(attr, (int, long)):
 | 
						|
            self.attr = attr
 | 
						|
        else:
 | 
						|
            if attr is None:
 | 
						|
                attr = "ORTH"
 | 
						|
            attr = attr.upper()
 | 
						|
            if attr == "TEXT":
 | 
						|
                attr = "ORTH"
 | 
						|
            if attr == "IS_SENT_START":
 | 
						|
                attr = "SENT_START"
 | 
						|
            if attr.lower() not in TokenPattern().dict():
 | 
						|
                raise ValueError(Errors.E152.format(attr=attr))
 | 
						|
            self.attr = IDS.get(attr)
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        """Get the number of match IDs added to the matcher.
 | 
						|
 | 
						|
        RETURNS (int): The number of rules.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/phrasematcher#len
 | 
						|
        """
 | 
						|
        return len(self._callbacks)
 | 
						|
 | 
						|
    def __contains__(self, key):
 | 
						|
        """Check whether the matcher contains rules for a match ID.
 | 
						|
 | 
						|
        key (str): The match ID.
 | 
						|
        RETURNS (bool): Whether the matcher contains rules for this match ID.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/phrasematcher#contains
 | 
						|
        """
 | 
						|
        return key in self._callbacks
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        data = (self.vocab, self._docs, self._callbacks, self.attr)
 | 
						|
        return (unpickle_matcher, data, None, None)
 | 
						|
 | 
						|
    def remove(self, key):
 | 
						|
        """Remove a rule from the matcher by match ID. A KeyError is raised if
 | 
						|
        the key does not exist.
 | 
						|
 | 
						|
        key (str): The match ID.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/phrasematcher#remove
 | 
						|
        """
 | 
						|
        if key not in self._docs:
 | 
						|
            raise KeyError(key)
 | 
						|
        cdef MapStruct* current_node
 | 
						|
        cdef MapStruct* terminal_map
 | 
						|
        cdef MapStruct* node_pointer
 | 
						|
        cdef void* result
 | 
						|
        cdef key_t terminal_key
 | 
						|
        cdef void* value
 | 
						|
        cdef int c_i = 0
 | 
						|
        cdef vector[MapStruct*] path_nodes
 | 
						|
        cdef vector[key_t] path_keys
 | 
						|
        cdef key_t key_to_remove
 | 
						|
        for keyword in sorted(self._docs[key], key=lambda x: len(x), reverse=True):
 | 
						|
            current_node = self.c_map
 | 
						|
            path_nodes.clear()
 | 
						|
            path_keys.clear()
 | 
						|
            for token in keyword:
 | 
						|
                result = map_get(current_node, token)
 | 
						|
                if result:
 | 
						|
                    path_nodes.push_back(current_node)
 | 
						|
                    path_keys.push_back(token)
 | 
						|
                    current_node = <MapStruct*>result
 | 
						|
                else:
 | 
						|
                    # if token is not found, break out of the loop
 | 
						|
                    current_node = NULL
 | 
						|
                    break
 | 
						|
            path_nodes.push_back(current_node)
 | 
						|
            path_keys.push_back(self._terminal_hash)
 | 
						|
            # remove the tokens from trie node if there are no other
 | 
						|
            # keywords with them
 | 
						|
            result = map_get(current_node, self._terminal_hash)
 | 
						|
            if current_node != NULL and result:
 | 
						|
                terminal_map = <MapStruct*>result
 | 
						|
                terminal_keys = []
 | 
						|
                c_i = 0
 | 
						|
                while map_iter(terminal_map, &c_i, &terminal_key, &value):
 | 
						|
                    terminal_keys.append(self.vocab.strings[terminal_key])
 | 
						|
                # if this is the only remaining key, remove unnecessary paths
 | 
						|
                if terminal_keys == [key]:
 | 
						|
                    while not path_nodes.empty():
 | 
						|
                        node_pointer = path_nodes.back()
 | 
						|
                        path_nodes.pop_back()
 | 
						|
                        key_to_remove = path_keys.back()
 | 
						|
                        path_keys.pop_back()
 | 
						|
                        result = map_get(node_pointer, key_to_remove)
 | 
						|
                        if node_pointer.filled == 1:
 | 
						|
                            map_clear(node_pointer, key_to_remove)
 | 
						|
                            self.mem.free(result)
 | 
						|
                        else:
 | 
						|
                            # more than one key means more than 1 path,
 | 
						|
                            # delete not required path and keep the others
 | 
						|
                            map_clear(node_pointer, key_to_remove)
 | 
						|
                            self.mem.free(result)
 | 
						|
                            break
 | 
						|
                # otherwise simply remove the key
 | 
						|
                else:
 | 
						|
                    result = map_get(current_node, self._terminal_hash)
 | 
						|
                    if result:
 | 
						|
                        map_clear(<MapStruct*>result, self.vocab.strings[key])
 | 
						|
 | 
						|
        del self._callbacks[key]
 | 
						|
        del self._docs[key]
 | 
						|
 | 
						|
    def add(self, key, docs, *_docs, on_match=None):
 | 
						|
        """Add a match-rule to the phrase-matcher. A match-rule consists of: an ID
 | 
						|
        key, an on_match callback, and one or more patterns.
 | 
						|
 | 
						|
        Since spaCy v2.2.2, PhraseMatcher.add takes a list of patterns as the
 | 
						|
        second argument, with the on_match callback as an optional keyword
 | 
						|
        argument.
 | 
						|
 | 
						|
        key (str): The match ID.
 | 
						|
        docs (list): List of `Doc` objects representing match patterns.
 | 
						|
        on_match (callable): Callback executed on match.
 | 
						|
        *_docs (Doc): For backwards compatibility: list of patterns to add
 | 
						|
            as variable arguments. Will be ignored if a list of patterns is
 | 
						|
            provided as the second argument.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/phrasematcher#add
 | 
						|
        """
 | 
						|
        if docs is None or hasattr(docs, "__call__"):  # old API
 | 
						|
            on_match = docs
 | 
						|
            docs = _docs
 | 
						|
 | 
						|
        _ = self.vocab[key]
 | 
						|
        self._callbacks[key] = on_match
 | 
						|
        self._docs.setdefault(key, set())
 | 
						|
 | 
						|
        cdef MapStruct* current_node
 | 
						|
        cdef MapStruct* internal_node
 | 
						|
        cdef void* result
 | 
						|
 | 
						|
        if isinstance(docs, Doc):
 | 
						|
            raise ValueError(Errors.E179.format(key=key))
 | 
						|
        for doc in docs:
 | 
						|
            if len(doc) == 0:
 | 
						|
                continue
 | 
						|
            if isinstance(doc, Doc):
 | 
						|
                attrs = (TAG, POS, MORPH, LEMMA, DEP)
 | 
						|
                has_annotation = {attr: doc.has_annotation(attr) for attr in attrs}
 | 
						|
                for attr in attrs:
 | 
						|
                    if self.attr == attr and not has_annotation[attr]:
 | 
						|
                        if attr == TAG:
 | 
						|
                            pipe = "tagger"
 | 
						|
                        elif attr in (POS, MORPH):
 | 
						|
                            pipe = "morphologizer or tagger+attribute_ruler"
 | 
						|
                        elif attr == LEMMA:
 | 
						|
                            pipe = "lemmatizer"
 | 
						|
                        elif attr == DEP:
 | 
						|
                            pipe = "parser"
 | 
						|
                        error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr))
 | 
						|
                        raise ValueError(error_msg)
 | 
						|
                if self._validate and any(has_annotation.values()) \
 | 
						|
                        and self.attr not in attrs:
 | 
						|
                    string_attr = self.vocab.strings[self.attr]
 | 
						|
                    warnings.warn(Warnings.W012.format(key=key, attr=string_attr))
 | 
						|
                keyword = self._convert_to_array(doc)
 | 
						|
            else:
 | 
						|
                keyword = doc
 | 
						|
            self._docs[key].add(tuple(keyword))
 | 
						|
 | 
						|
            current_node = self.c_map
 | 
						|
            for token in keyword:
 | 
						|
                if token == self._terminal_hash:
 | 
						|
                    warnings.warn(Warnings.W021)
 | 
						|
                    break
 | 
						|
                result = <MapStruct*>map_get(current_node, token)
 | 
						|
                if not result:
 | 
						|
                    internal_node = <MapStruct*>self.mem.alloc(1, sizeof(MapStruct))
 | 
						|
                    map_init(self.mem, internal_node, 8)
 | 
						|
                    map_set(self.mem, current_node, token, internal_node)
 | 
						|
                    result = internal_node
 | 
						|
                current_node = <MapStruct*>result
 | 
						|
            result = <MapStruct*>map_get(current_node, self._terminal_hash)
 | 
						|
            if not result:
 | 
						|
                internal_node = <MapStruct*>self.mem.alloc(1, sizeof(MapStruct))
 | 
						|
                map_init(self.mem, internal_node, 8)
 | 
						|
                map_set(self.mem, current_node, self._terminal_hash, internal_node)
 | 
						|
                result = internal_node
 | 
						|
            map_set(self.mem, <MapStruct*>result, self.vocab.strings[key], NULL)
 | 
						|
 | 
						|
    def __call__(self, object doclike, *, as_spans=False):
 | 
						|
        """Find all sequences matching the supplied patterns on the `Doc`.
 | 
						|
 | 
						|
        doclike (Doc or Span): The document to match over.
 | 
						|
        as_spans (bool): Return Span objects with labels instead of (match_id,
 | 
						|
            start, end) tuples.
 | 
						|
        RETURNS (list): A list of `(match_id, start, end)` tuples,
 | 
						|
            describing the matches. A match tuple describes a span
 | 
						|
            `doc[start:end]`. The `match_id` is an integer. If as_spans is set
 | 
						|
            to True, a list of Span objects is returned.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/phrasematcher#call
 | 
						|
        """
 | 
						|
        matches = []
 | 
						|
        if doclike is None or len(doclike) == 0:
 | 
						|
            # if doc is empty or None just return empty list
 | 
						|
            return matches
 | 
						|
        if isinstance(doclike, Doc):
 | 
						|
            doc = doclike
 | 
						|
            start_idx = 0
 | 
						|
            end_idx = len(doc)
 | 
						|
        elif isinstance(doclike, Span):
 | 
						|
            doc = doclike.doc
 | 
						|
            start_idx = doclike.start
 | 
						|
            end_idx = doclike.end
 | 
						|
        else:
 | 
						|
            raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doclike).__name__))
 | 
						|
 | 
						|
        cdef vector[SpanC] c_matches
 | 
						|
        self.find_matches(doc, start_idx, end_idx, &c_matches)
 | 
						|
        for i in range(c_matches.size()):
 | 
						|
            matches.append((c_matches[i].label, c_matches[i].start, c_matches[i].end))
 | 
						|
        for i, (ent_id, start, end) in enumerate(matches):
 | 
						|
            on_match = self._callbacks.get(self.vocab.strings[ent_id])
 | 
						|
            if on_match is not None:
 | 
						|
                on_match(self, doc, i, matches)
 | 
						|
        if as_spans:
 | 
						|
            return [Span(doc, start, end, label=key) for key, start, end in matches]
 | 
						|
        else:
 | 
						|
            return matches
 | 
						|
 | 
						|
    cdef void find_matches(self, Doc doc, int start_idx, int end_idx, vector[SpanC] *matches) nogil:
 | 
						|
        cdef MapStruct* current_node = self.c_map
 | 
						|
        cdef int start = 0
 | 
						|
        cdef int idx = start_idx
 | 
						|
        cdef int idy = start_idx
 | 
						|
        cdef key_t key
 | 
						|
        cdef void* value
 | 
						|
        cdef int i = 0
 | 
						|
        cdef SpanC ms
 | 
						|
        cdef void* result
 | 
						|
        while idx < end_idx:
 | 
						|
            start = idx
 | 
						|
            token = Token.get_struct_attr(&doc.c[idx], self.attr)
 | 
						|
            # look for sequences from this position
 | 
						|
            result = map_get(current_node, token)
 | 
						|
            if result:
 | 
						|
                current_node = <MapStruct*>result
 | 
						|
                idy = idx + 1
 | 
						|
                while idy < end_idx:
 | 
						|
                    result = map_get(current_node, self._terminal_hash)
 | 
						|
                    if result:
 | 
						|
                        i = 0
 | 
						|
                        while map_iter(<MapStruct*>result, &i, &key, &value):
 | 
						|
                            ms = make_spanstruct(key, start, idy)
 | 
						|
                            matches.push_back(ms)
 | 
						|
                    inner_token = Token.get_struct_attr(&doc.c[idy], self.attr)
 | 
						|
                    result = map_get(current_node, inner_token)
 | 
						|
                    if result:
 | 
						|
                        current_node = <MapStruct*>result
 | 
						|
                        idy += 1
 | 
						|
                    else:
 | 
						|
                        break
 | 
						|
                else:
 | 
						|
                    # end of doc reached
 | 
						|
                    result = map_get(current_node, self._terminal_hash)
 | 
						|
                    if result:
 | 
						|
                        i = 0
 | 
						|
                        while map_iter(<MapStruct*>result, &i, &key, &value):
 | 
						|
                            ms = make_spanstruct(key, start, idy)
 | 
						|
                            matches.push_back(ms)
 | 
						|
            current_node = self.c_map
 | 
						|
            idx += 1
 | 
						|
 | 
						|
    def pipe(self, stream, batch_size=1000, return_matches=False, as_tuples=False):
 | 
						|
        """Match a stream of documents, yielding them in turn. Deprecated as of
 | 
						|
        spaCy v3.0.
 | 
						|
        """
 | 
						|
        warnings.warn(Warnings.W105.format(matcher="PhraseMatcher"), DeprecationWarning)
 | 
						|
        if as_tuples:
 | 
						|
            for doc, context in stream:
 | 
						|
                matches = self(doc)
 | 
						|
                if return_matches:
 | 
						|
                    yield ((doc, matches), context)
 | 
						|
                else:
 | 
						|
                    yield (doc, context)
 | 
						|
        else:
 | 
						|
            for doc in stream:
 | 
						|
                matches = self(doc)
 | 
						|
                if return_matches:
 | 
						|
                    yield (doc, matches)
 | 
						|
                else:
 | 
						|
                    yield doc
 | 
						|
 | 
						|
    def _convert_to_array(self, Doc doc):
 | 
						|
        return [Token.get_struct_attr(&doc.c[i], self.attr) for i in range(len(doc))]
 | 
						|
 | 
						|
 | 
						|
def unpickle_matcher(vocab, docs, callbacks, attr):
 | 
						|
    matcher = PhraseMatcher(vocab, attr=attr)
 | 
						|
    for key, specs in docs.items():
 | 
						|
        callback = callbacks.get(key, None)
 | 
						|
        matcher.add(key, specs, on_match=callback)
 | 
						|
    return matcher
 | 
						|
 | 
						|
 | 
						|
cdef SpanC make_spanstruct(attr_t label, int start, int end) nogil:
 | 
						|
    cdef SpanC spanc
 | 
						|
    spanc.label = label
 | 
						|
    spanc.start = start
 | 
						|
    spanc.end = end
 | 
						|
    return spanc
 |