mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			402 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			402 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| cimport cython
 | |
| from libc.string cimport memcpy, memset
 | |
| 
 | |
| import numpy
 | |
| 
 | |
| from ..lexeme cimport EMPTY_LEXEME
 | |
| from ..serialize import BitArray
 | |
| from ..strings cimport slice_unicode
 | |
| from ..typedefs cimport attr_id_t, attr_t, flags_t
 | |
| from ..typedefs cimport LEMMA
 | |
| from ..typedefs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER
 | |
| from ..typedefs cimport POS, LEMMA, TAG, DEP
 | |
| from ..parts_of_speech import UNIV_POS_NAMES
 | |
| from ..parts_of_speech cimport CONJ, PUNCT
 | |
| from ..lexeme cimport check_flag
 | |
| from .spans import Span
 | |
| from ..structs cimport UniStr
 | |
| from .token cimport Token
 | |
| 
 | |
| 
 | |
| DEF PADDING = 5
 | |
| 
 | |
| 
 | |
| cdef int bounds_check(int i, int length, int padding) except -1:
 | |
|     if (i + padding) < 0:
 | |
|         raise IndexError
 | |
|     if (i - padding) >= length:
 | |
|         raise IndexError
 | |
| 
 | |
| 
 | |
| cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
 | |
|     if feat_name == LEMMA:
 | |
|         return token.lemma
 | |
|     elif feat_name == POS:
 | |
|         return token.pos
 | |
|     elif feat_name == TAG:
 | |
|         return token.tag
 | |
|     elif feat_name == DEP:
 | |
|         return token.dep
 | |
|     else:
 | |
|         return get_lex_attr(token.lex, feat_name)
 | |
| 
 | |
| 
 | |
| cdef attr_t get_lex_attr(const LexemeC* lex, attr_id_t feat_name) nogil:
 | |
|     if feat_name < (sizeof(flags_t) * 8):
 | |
|         return check_flag(lex, feat_name)
 | |
|     elif feat_name == ID:
 | |
|         return lex.id
 | |
|     elif feat_name == ORTH:
 | |
|         return lex.orth
 | |
|     elif feat_name == LOWER:
 | |
|         return lex.lower
 | |
|     elif feat_name == NORM:
 | |
|         return lex.norm
 | |
|     elif feat_name == SHAPE:
 | |
|         return lex.shape
 | |
|     elif feat_name == PREFIX:
 | |
|         return lex.prefix
 | |
|     elif feat_name == SUFFIX:
 | |
|         return lex.suffix
 | |
|     elif feat_name == LENGTH:
 | |
|         return lex.length
 | |
|     elif feat_name == CLUSTER:
 | |
|         return lex.cluster
 | |
|     else:
 | |
|         return 0
 | |
| 
 | |
| 
 | |
| cdef class Doc:
 | |
|     """
 | |
|     Container class for annotated text.  Constructed via English.__call__ or
 | |
|     Tokenizer.__call__.
 | |
|     """
 | |
|     def __init__(self, Vocab vocab):
 | |
|         self.vocab = vocab
 | |
|         size = 20
 | |
|         self.mem = Pool()
 | |
|         # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
 | |
|         # However, we need to remember the true starting places, so that we can
 | |
|         # realloc.
 | |
|         data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
 | |
|         cdef int i
 | |
|         for i in range(size + (PADDING*2)):
 | |
|             data_start[i].lex = &EMPTY_LEXEME
 | |
|         self.data = data_start + PADDING
 | |
|         self.max_length = size
 | |
|         self.length = 0
 | |
|         self.is_tagged = False
 | |
|         self.is_parsed = False
 | |
|         self._py_tokens = []
 | |
| 
 | |
|     def __getitem__(self, object i):
 | |
|         """Get a token.
 | |
| 
 | |
|         Returns:
 | |
|             token (Token):
 | |
|         """
 | |
|         if isinstance(i, slice):
 | |
|             if i.step is not None:
 | |
|                 raise ValueError("Stepped slices not supported in Span objects."
 | |
|                                  "Try: list(doc)[start:stop:step] instead.")
 | |
|             return Span(self, i.start, i.stop, label=0)
 | |
| 
 | |
|         if i < 0:
 | |
|             i = self.length + i
 | |
|         bounds_check(i, self.length, PADDING)
 | |
|         if self._py_tokens[i] is not None:
 | |
|             return self._py_tokens[i]
 | |
|         else:
 | |
|             return Token.cinit(self.vocab, &self.data[i], i, self)
 | |
| 
 | |
|     def __iter__(self):
 | |
|         """Iterate over the tokens.
 | |
| 
 | |
|         Yields:
 | |
|             token (Token):
 | |
|         """
 | |
|         for i in range(self.length):
 | |
|             yield Token.cinit(self.vocab, &self.data[i], i, self)
 | |
| 
 | |
|     def __len__(self):
 | |
|         return self.length
 | |
| 
 | |
|     def __unicode__(self):
 | |
|         return u''.join([t.string for t in self])
 | |
| 
 | |
|     @property
 | |
|     def string(self):
 | |
|         return unicode(self)
 | |
| 
 | |
|     @property
 | |
|     def ents(self):
 | |
|         """Yields named-entity Span objects.
 | |
|         
 | |
|         Iterate over the span to get individual Token objects, or access the label:
 | |
| 
 | |
|         >>> from spacy.en import English
 | |
|         >>> nlp = English()
 | |
|         >>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
 | |
|         >>> ents = list(tokens.ents)
 | |
|         >>> ents[0].label, ents[0].label_, ''.join(t.orth_ for t in ents[0])
 | |
|         (112504, u'PERSON', u'Best ') 
 | |
|         """
 | |
|         cdef int i
 | |
|         cdef const TokenC* token
 | |
|         cdef int start = -1
 | |
|         cdef int label = 0
 | |
|         for i in range(self.length):
 | |
|             token = &self.data[i]
 | |
|             if token.ent_iob == 1:
 | |
|                 assert start != -1
 | |
|                 pass
 | |
|             elif token.ent_iob == 2:
 | |
|                 if start != -1:
 | |
|                     yield Span(self, start, i, label=label)
 | |
|                 start = -1
 | |
|                 label = 0
 | |
|             elif token.ent_iob == 3:
 | |
|                 if start != -1:
 | |
|                     yield Span(self, start, i, label=label)
 | |
|                 start = i
 | |
|                 label = token.ent_type
 | |
|         if start != -1:
 | |
|             yield Span(self, start, self.length, label=label)
 | |
| 
 | |
|     @property
 | |
|     def sents(self):
 | |
|         """
 | |
|         Yield a list of sentence Span objects, calculated from the dependency parse.
 | |
|         """
 | |
|         cdef int i
 | |
|         start = 0
 | |
|         for i in range(1, self.length):
 | |
|             if self.data[i].sent_start:
 | |
|                 yield Span(self, start, i)
 | |
|                 start = i
 | |
|         yield Span(self, start, self.length)
 | |
| 
 | |
|     cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1:
 | |
|         if self.length == self.max_length:
 | |
|             self._realloc(self.length * 2)
 | |
|         cdef TokenC* t = &self.data[self.length]
 | |
|         if LexemeOrToken is TokenC_ptr:
 | |
|             t[0] = lex_or_tok[0]
 | |
|         else:
 | |
|             t.lex = lex_or_tok
 | |
|         if self.length == 0:
 | |
|             t.idx = 0
 | |
|         else:
 | |
|             t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy
 | |
|         t.spacy = has_space
 | |
|         self.length += 1
 | |
|         self._py_tokens.append(None)
 | |
|         return t.idx + t.lex.length + t.spacy
 | |
| 
 | |
|     @cython.boundscheck(False)
 | |
|     cpdef np.ndarray to_array(self, object py_attr_ids):
 | |
|         """Given a list of M attribute IDs, export the tokens to a numpy ndarray
 | |
|         of shape N*M, where N is the length of the sentence.
 | |
| 
 | |
|         Arguments:
 | |
|             attr_ids (list[int]): A list of attribute ID ints.
 | |
| 
 | |
|         Returns:
 | |
|             feat_array (numpy.ndarray[long, ndim=2]):
 | |
|               A feature matrix, with one row per word, and one column per attribute
 | |
|               indicated in the input attr_ids.
 | |
|         """
 | |
|         cdef int i, j
 | |
|         cdef attr_id_t feature
 | |
|         cdef np.ndarray[long, ndim=2] output
 | |
|         # Make an array from the attributes --- otherwise our inner loop is Python
 | |
|         # dict iteration.
 | |
|         cdef np.ndarray[long, ndim=1] attr_ids = numpy.asarray(py_attr_ids)
 | |
|         output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int)
 | |
|         for i in range(self.length):
 | |
|             for j, feature in enumerate(attr_ids):
 | |
|                 output[i, j] = get_token_attr(&self.data[i], feature)
 | |
|         return output
 | |
| 
 | |
|     def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
 | |
|         """Produce a dict of {attribute (int): count (ints)} frequencies, keyed
 | |
|         by the values of the given attribute ID.
 | |
| 
 | |
|           >>> from spacy.en import English, attrs
 | |
|           >>> nlp = English()
 | |
|           >>> tokens = nlp(u'apple apple orange banana')
 | |
|           >>> tokens.count_by(attrs.ORTH)
 | |
|           {12800L: 1, 11880L: 2, 7561L: 1}
 | |
|           >>> tokens.to_array([attrs.ORTH])
 | |
|           array([[11880],
 | |
|                  [11880],
 | |
|                  [ 7561],
 | |
|                  [12800]])
 | |
|         """
 | |
|         cdef int i
 | |
|         cdef attr_t attr
 | |
|         cdef size_t count
 | |
|         
 | |
|         if counts is None:
 | |
|             counts = PreshCounter(self.length)
 | |
|             output_dict = True
 | |
|         else:
 | |
|             output_dict = False
 | |
|         # Take this check out of the loop, for a bit of extra speed
 | |
|         if exclude is None:
 | |
|             for i in range(self.length):
 | |
|                 attr = get_token_attr(&self.data[i], attr_id)
 | |
|                 counts.inc(attr, 1)
 | |
|         else:
 | |
|             for i in range(self.length):
 | |
|                 if not exclude(self[i]):
 | |
|                     attr = get_token_attr(&self.data[i], attr_id)
 | |
|                     counts.inc(attr, 1)
 | |
|         if output_dict:
 | |
|             return dict(counts)
 | |
| 
 | |
|     def _realloc(self, new_size):
 | |
|         self.max_length = new_size
 | |
|         n = new_size + (PADDING * 2)
 | |
|         # What we're storing is a "padded" array. We've jumped forward PADDING
 | |
|         # places, and are storing the pointer to that. This way, we can access
 | |
|         # words out-of-bounds, and get out-of-bounds markers.
 | |
|         # Now that we want to realloc, we need the address of the true start,
 | |
|         # so we jump the pointer back PADDING places.
 | |
|         cdef TokenC* data_start = self.data - PADDING
 | |
|         data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
 | |
|         self.data = data_start + PADDING
 | |
|         cdef int i
 | |
|         for i in range(self.length, self.max_length + PADDING):
 | |
|             self.data[i].lex = &EMPTY_LEXEME
 | |
| 
 | |
|     cdef int set_parse(self, const TokenC* parsed) except -1:
 | |
|         # TODO: This method is fairly misleading atm. It's used by GreedyParser
 | |
|         # to actually apply the parse calculated. Need to rethink this.
 | |
|         self.is_parsed = True
 | |
|         for i in range(self.length):
 | |
|             self.data[i] = parsed[i]
 | |
| 
 | |
|     def merge(self, int start_idx, int end_idx, unicode tag, unicode lemma,
 | |
|               unicode ent_type):
 | |
|         """Merge a multi-word expression into a single token.  Currently
 | |
|         experimental; API is likely to change."""
 | |
|         cdef int i
 | |
|         cdef int start = -1
 | |
|         cdef int end = -1
 | |
|         for i in range(self.length):
 | |
|             if self.data[i].idx == start_idx:
 | |
|                 start = i
 | |
|             if (self.data[i].idx + self.data[i].lex.length) == end_idx:
 | |
|                 if start == -1:
 | |
|                     return None
 | |
|                 end = i + 1
 | |
|                 break
 | |
|         else:
 | |
|             return None
 | |
|         cdef unicode string = self.string
 | |
|         # Get LexemeC for newly merged token
 | |
|         cdef UniStr new_orth_c
 | |
|         slice_unicode(&new_orth_c, string, start_idx, end_idx)
 | |
|         cdef const LexemeC* lex = self.vocab.get(self.mem, &new_orth_c)
 | |
|         # House the new merged token where it starts
 | |
|         cdef TokenC* token = &self.data[start]
 | |
|         # Update fields
 | |
|         token.lex = lex
 | |
|         # What to do about morphology??
 | |
|         # TODO: token.morph = ???
 | |
|         token.tag = self.vocab.strings[tag]
 | |
|         token.lemma = self.vocab.strings[lemma]
 | |
|         if ent_type == 'O':
 | |
|             token.ent_iob = 2
 | |
|             token.ent_type = 0
 | |
|         else:
 | |
|             token.ent_iob = 3
 | |
|             token.ent_type = self.vocab.strings[ent_type]
 | |
|         # Fix dependencies
 | |
|         # Begin by setting all the head indices to absolute token positions
 | |
|         # This is easier to work with for now than the offsets
 | |
|         for i in range(self.length):
 | |
|             self.data[i].head += i
 | |
|         # Find the head of the merged token, and its dep relation
 | |
|         outer_heads = {}
 | |
|         for i in range(start, end):
 | |
|             head_idx = self.data[i].head
 | |
|             if head_idx == i or head_idx < start or head_idx >= end:
 | |
|                 # Don't consider "heads" which are actually dominated by a word
 | |
|                 # in the region we're merging
 | |
|                 gp = head_idx
 | |
|                 while self.data[gp].head != gp:
 | |
|                     if start <= gp < end:
 | |
|                         break
 | |
|                     gp = self.data[gp].head
 | |
|                 else:
 | |
|                     # If we have multiple words attaching to the same head,
 | |
|                     # but with different dep labels, we're preferring the last
 | |
|                     # occurring dep label. Shrug. What else could we do, I guess?
 | |
|                     outer_heads[head_idx] = self.data[i].dep
 | |
| 
 | |
|         token.head, token.dep = max(outer_heads.items())
 | |
|         # Adjust deps before shrinking tokens
 | |
|         # Tokens which point into the merged token should now point to it
 | |
|         # Subtract the offset from all tokens which point to >= end
 | |
|         offset = (end - start) - 1
 | |
|         for i in range(self.length):
 | |
|             head_idx = self.data[i].head
 | |
|             if start <= head_idx < end:
 | |
|                 self.data[i].head = start
 | |
|             elif head_idx >= end:
 | |
|                 self.data[i].head -= offset
 | |
|         # TODO: Fix left and right deps
 | |
|         # Now compress the token array
 | |
|         for i in range(end, self.length):
 | |
|             self.data[i - offset] = self.data[i]
 | |
|         for i in range(self.length - offset, self.length):
 | |
|             memset(&self.data[i], 0, sizeof(TokenC))
 | |
|             self.data[i].lex = &EMPTY_LEXEME
 | |
|         self.length -= offset
 | |
|         for i in range(self.length):
 | |
|             # ...And, set heads back to a relative position
 | |
|             self.data[i].head -= i
 | |
| 
 | |
|         # Return the merged Python object
 | |
|         return self[start]
 | |
| 
 | |
|     def serialize(self, bits=None):
 | |
|         if bits is None:
 | |
|             bits = BitArray()
 | |
|         codec = self.vocab.codec
 | |
|         ids = numpy.zeros(shape=(len(self),), dtype=numpy.uint32)
 | |
|         cdef int i
 | |
|         for i in range(self.length):
 | |
|             ids[i] = self.data[i].lex.id
 | |
|         bits = codec.encode(ids, bits=bits)
 | |
|         for i in range(self.length):
 | |
|             bits.append(self.data[i].spacy)
 | |
|         return bits
 | |
| 
 | |
|     @staticmethod
 | |
|     def deserialize(Vocab vocab, bits):
 | |
|         biterator = iter(bits)
 | |
|         ids = vocab.codec.decode(biterator)
 | |
|         spaces = []
 | |
|         for bit in biterator:
 | |
|             spaces.append(bit)
 | |
|             if len(spaces) == len(ids):
 | |
|                 break
 | |
|         string = u''
 | |
|         cdef const LexemeC* lex
 | |
|         for id_, space in zip(ids, spaces):
 | |
|             lex = vocab.lexemes[id_]
 | |
|             string += vocab.strings[lex.orth]
 | |
|             if space:
 | |
|                 string += u' '
 | |
|         cdef Doc doc = Doc(vocab)
 | |
|         cdef bint has_space = False
 | |
|         cdef int idx = 0
 | |
|         for i, id_ in enumerate(ids):
 | |
|             lex = vocab.lexemes[id_]
 | |
|             has_space = spaces[i]
 | |
|             doc.push_back(lex, has_space)
 | |
|         return doc
 |