spaCy/bin/wiki_entity_linking/train_descriptions.py
Sofie Van Landeghem 0ba1b5eebc CLI scripts for entity linking (wikipedia & generic) (#4091)
* document token ent_kb_id

* document span kb_id

* update pipeline documentation

* prior and context weights as bool's instead

* entitylinker api documentation

* drop for both models

* finish entitylinker documentation

* small fixes

* documentation for KB

* candidate documentation

* links to api pages in code

* small fix

* frequency examples as counts for consistency

* consistent documentation about tensors returned by predict

* add entity linking to usage 101

* add entity linking infobox and KB section to 101

* entity-linking in linguistic features

* small typo corrections

* training example and docs for entity_linker

* predefined nlp and kb

* revert back to similarity encodings for simplicity (for now)

* set prior probabilities to 0 when excluded

* code clean up

* bugfix: deleting kb ID from tokens when entities were removed

* refactor train el example to use either model or vocab

* pretrain_kb example for example kb generation

* add to training docs for KB + EL example scripts

* small fixes

* error numbering

* ensure the language of vocab and nlp stay consistent across serialization

* equality with =

* avoid conflict in errors file

* add error 151

* final adjustements to the train scripts - consistency

* update of goldparse documentation

* small corrections

* push commit

* turn kb_creator into CLI script (wip)

* proper parameters for training entity vectors

* wikidata pipeline split up into two executable scripts

* remove context_width

* move wikidata scripts in bin directory, remove old dummy script

* refine KB script with logs and preprocessing options

* small edits

* small improvements to logging of EL CLI script
2019-08-13 15:38:59 +02:00

152 lines
5.0 KiB
Python

# coding: utf-8
from random import shuffle
import numpy as np
from spacy._ml import zero_init, create_default_optimizer
from spacy.cli.pretrain import get_cossim_loss
from thinc.v2v import Model
from thinc.api import chain
from thinc.neural._classes.affine import Affine
class EntityEncoder:
"""
Train the embeddings of entity descriptions to fit a fixed-size entity vector (e.g. 64D).
This entity vector will be stored in the KB, for further downstream use in the entity model.
"""
DROP = 0
BATCH_SIZE = 1000
# Set min. acceptable loss to avoid a 'mean of empty slice' warning by numpy
MIN_LOSS = 0.01
# Reasonable default to stop training when things are not improving
MAX_NO_IMPROVEMENT = 20
def __init__(self, nlp, input_dim, desc_width, epochs=5):
self.nlp = nlp
self.input_dim = input_dim
self.desc_width = desc_width
self.epochs = epochs
def apply_encoder(self, description_list):
if self.encoder is None:
raise ValueError("Can not apply encoder before training it")
batch_size = 100000
start = 0
stop = min(batch_size, len(description_list))
encodings = []
while start < len(description_list):
docs = list(self.nlp.pipe(description_list[start:stop]))
doc_embeddings = [self._get_doc_embedding(doc) for doc in docs]
enc = self.encoder(np.asarray(doc_embeddings))
encodings.extend(enc.tolist())
start = start + batch_size
stop = min(stop + batch_size, len(description_list))
print("encoded:", stop, "entities")
return encodings
def train(self, description_list, to_print=False):
processed, loss = self._train_model(description_list)
if to_print:
print(
"Trained entity descriptions on",
processed,
"(non-unique) entities across",
self.epochs,
"epochs",
)
print("Final loss:", loss)
def _train_model(self, description_list):
best_loss = 1.0
iter_since_best = 0
self._build_network(self.input_dim, self.desc_width)
processed = 0
loss = 1
# copy this list so that shuffling does not affect other functions
descriptions = description_list.copy()
to_continue = True
for i in range(self.epochs):
shuffle(descriptions)
batch_nr = 0
start = 0
stop = min(self.BATCH_SIZE, len(descriptions))
while to_continue and start < len(descriptions):
batch = []
for descr in descriptions[start:stop]:
doc = self.nlp(descr)
doc_vector = self._get_doc_embedding(doc)
batch.append(doc_vector)
loss = self._update(batch)
if batch_nr % 25 == 0:
print("loss:", loss)
processed += len(batch)
# in general, continue training if we haven't reached our ideal min yet
to_continue = loss > self.MIN_LOSS
# store the best loss and track how long it's been
if loss < best_loss:
best_loss = loss
iter_since_best = 0
else:
iter_since_best += 1
# stop learning if we haven't seen improvement since the last few iterations
if iter_since_best > self.MAX_NO_IMPROVEMENT:
to_continue = False
batch_nr += 1
start = start + self.BATCH_SIZE
stop = min(stop + self.BATCH_SIZE, len(descriptions))
return processed, loss
@staticmethod
def _get_doc_embedding(doc):
indices = np.zeros((len(doc),), dtype="i")
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
word_vectors = doc.vocab.vectors.data[indices]
doc_vector = np.mean(word_vectors, axis=0)
return doc_vector
def _build_network(self, orig_width, hidden_with):
with Model.define_operators({">>": chain}):
# very simple encoder-decoder model
self.encoder = Affine(hidden_with, orig_width)
self.model = self.encoder >> zero_init(
Affine(orig_width, hidden_with, drop_factor=0.0)
)
self.sgd = create_default_optimizer(self.model.ops)
def _update(self, vectors):
predictions, bp_model = self.model.begin_update(
np.asarray(vectors), drop=self.DROP
)
loss, d_scores = self._get_loss(scores=predictions, golds=np.asarray(vectors))
bp_model(d_scores, sgd=self.sgd)
return loss / len(vectors)
@staticmethod
def _get_loss(golds, scores):
loss, gradients = get_cossim_loss(scores, golds)
return loss, gradients