spaCy/spacy/vectors.pyx
Matthew Honnibal 95a9615221 Fix loading of multiple pre-trained vectors
This patch addresses #1660, which was caused by keying all pre-trained
vectors with the same ID when telling Thinc how to refer to them. This
meant that if multiple models were loaded that had pre-trained vectors,
errors or incorrect behaviour resulted.

The vectors class now includes a .name attribute, which defaults to:
{nlp.meta['lang']_nlp.meta['name']}.vectors
The vectors name is set in the cfg of the pipeline components under the
key pretrained_vectors. This replaces the previous cfg key
pretrained_dims.

In order to make existing models compatible with this change, we check
for the pretrained_dims key when loading models in from_disk and
from_bytes, and add the cfg key pretrained_vectors if we find it.
2018-03-28 16:02:59 +02:00

425 lines
15 KiB
Cython

# coding: utf8
from __future__ import unicode_literals
import functools
import numpy
from collections import OrderedDict
import msgpack
import msgpack_numpy
msgpack_numpy.patch()
cimport numpy as np
from thinc.neural.util import get_array_module
from thinc.neural._classes.model import Model
from .strings cimport StringStore, hash_string
from .compat import basestring_, path2str
from . import util
def unpickle_vectors(bytes_data):
return Vectors().from_bytes(bytes_data)
class GlobalRegistry(object):
'''Global store of vectors, to avoid repeatedly loading the data.'''
data = {}
@classmethod
def register(cls, name, data):
cls.data[name] = data
return functools.partial(cls.get, name)
@classmethod
def get(cls, name):
return cls.data[name]
cdef class Vectors:
"""Store, save and load word vectors.
Vectors data is kept in the vectors.data attribute, which should be an
instance of numpy.ndarray (for CPU vectors) or cupy.ndarray
(for GPU vectors). `vectors.key2row` is a dictionary mapping word hashes to
rows in the vectors.data table.
Multiple keys can be mapped to the same vector, and not all of the rows in
the table need to be assigned --- so len(list(vectors.keys())) may be
greater or smaller than vectors.shape[0].
"""
cdef public object name
cdef public object data
cdef public object key2row
cdef public object _unset
def __init__(self, *, shape=None, data=None, keys=None, name=None):
"""Create a new vector store.
shape (tuple): Size of the table, as (# entries, # columns)
data (numpy.ndarray): The vector data.
keys (iterable): A sequence of keys, aligned with the data.
name (string): A name to identify the vectors table.
RETURNS (Vectors): The newly created object.
"""
self.name = name
if data is None:
if shape is None:
shape = (0,0)
data = numpy.zeros(shape, dtype='f')
self.data = data
self.key2row = OrderedDict()
if self.data is not None:
self._unset = set(range(self.data.shape[0]))
else:
self._unset = set()
if keys is not None:
for i, key in enumerate(keys):
self.add(key, row=i)
@property
def shape(self):
"""Get `(rows, dims)` tuples of number of rows and number of dimensions
in the vector table.
RETURNS (tuple): A `(rows, dims)` pair.
"""
return self.data.shape
@property
def size(self):
"""RETURNS (int): rows*dims"""
return self.data.shape[0] * self.data.shape[1]
@property
def is_full(self):
"""RETURNS (bool): `True` if no slots are available for new keys."""
return len(self._unset) == 0
@property
def n_keys(self):
"""RETURNS (int) The number of keys in the table. Note that this is the
number of all keys, not just unique vectors."""
return len(self.key2row)
def __reduce__(self):
return (unpickle_vectors, (self.to_bytes(),))
def __getitem__(self, key):
"""Get a vector by key. If the key is not found, a KeyError is raised.
key (int): The key to get the vector for.
RETURNS (ndarray): The vector for the key.
"""
i = self.key2row[key]
if i is None:
raise KeyError(key)
else:
return self.data[i]
def __setitem__(self, key, vector):
"""Set a vector for the given key.
key (int): The key to set the vector for.
vector (ndarray): The vector to set.
"""
i = self.key2row[key]
self.data[i] = vector
if i in self._unset:
self._unset.remove(i)
def __iter__(self):
"""Iterate over the keys in the table.
YIELDS (int): A key in the table.
"""
yield from self.key2row
def __len__(self):
"""Return the number of vectors in the table.
RETURNS (int): The number of vectors in the data.
"""
return self.data.shape[0]
def __contains__(self, key):
"""Check whether a key has been mapped to a vector entry in the table.
key (int): The key to check.
RETURNS (bool): Whether the key has a vector entry.
"""
return key in self.key2row
def resize(self, shape, inplace=False):
"""Resize the underlying vectors array. If inplace=True, the memory
is reallocated. This may cause other references to the data to become
invalid, so only use inplace=True if you're sure that's what you want.
If the number of vectors is reduced, keys mapped to rows that have been
deleted are removed. These removed items are returned as a list of
`(key, row)` tuples.
"""
if inplace:
self.data.resize(shape, refcheck=False)
else:
xp = get_array_module(self.data)
self.data = xp.resize(self.data, shape)
filled = {row for row in self.key2row.values()}
self._unset = {row for row in range(shape[0]) if row not in filled}
removed_items = []
for key, row in list(self.key2row.items()):
if row >= shape[0]:
self.key2row.pop(key)
removed_items.append((key, row))
return removed_items
def keys(self):
"""A sequence of the keys in the table.
RETURNS (iterable): The keys.
"""
return self.key2row.keys()
def values(self):
"""Iterate over vectors that have been assigned to at least one key.
Note that some vectors may be unassigned, so the number of vectors
returned may be less than the length of the vectors table.
YIELDS (ndarray): A vector in the table.
"""
for row, vector in enumerate(range(self.data.shape[0])):
if row not in self._unset:
yield vector
def items(self):
"""Iterate over `(key, vector)` pairs.
YIELDS (tuple): A key/vector pair.
"""
for key, row in self.key2row.items():
yield key, self.data[row]
def find(self, *, key=None, keys=None, row=None, rows=None):
"""Look up one or more keys by row, or vice versa.
key (unicode / int): Find the row that the given key points to.
Returns int, -1 if missing.
keys (iterable): Find rows that the keys point to.
Returns ndarray.
row (int): Find the first key that point to the row.
Returns int.
rows (iterable): Find the keys that point to the rows.
Returns ndarray.
RETURNS: The requested key, keys, row or rows.
"""
if sum(arg is None for arg in (key, keys, row, rows)) != 3:
raise ValueError("One (and only one) keyword arg must be set.")
xp = get_array_module(self.data)
if key is not None:
if isinstance(key, basestring_):
key = hash_string(key)
return self.key2row.get(key, -1)
elif keys is not None:
keys = [hash_string(key) if isinstance(key, basestring_) else key
for key in keys]
rows = [self.key2row.get(key, -1.) for key in keys]
return xp.asarray(rows, dtype='i')
else:
targets = set()
if row is not None:
targets.add(row)
else:
targets.update(rows)
results = []
for key, row in self.key2row.items():
if row in targets:
results.append(key)
targets.remove(row)
return xp.asarray(results, dtype='uint64')
def add(self, key, *, vector=None, row=None):
"""Add a key to the table. Keys can be mapped to an existing vector
by setting `row`, or a new vector can be added.
key (int): The key to add.
vector (ndarray / None): A vector to add for the key.
row (int / None): The row number of a vector to map the key to.
RETURNS (int): The row the vector was added to.
"""
if isinstance(key, basestring):
key = hash_string(key)
if row is None and key in self.key2row:
row = self.key2row[key]
elif row is None:
if self.is_full:
raise ValueError("Cannot add new key to vectors -- full")
row = min(self._unset)
self.key2row[key] = row
if vector is not None:
self.data[row] = vector
if row in self._unset:
self._unset.remove(row)
return row
def most_similar(self, queries, *, batch_size=1024):
"""For each of the given vectors, find the single entry most similar
to it, by cosine.
Queries are by vector. Results are returned as a `(keys, best_rows,
scores)` tuple. If `queries` is large, the calculations are performed in
chunks, to avoid consuming too much memory. You can set the `batch_size`
to control the size/space trade-off during the calculations.
queries (ndarray): An array with one or more vectors.
batch_size (int): The batch size to use.
RETURNS (tuple): The most similar entry as a `(keys, best_rows, scores)`
tuple.
"""
xp = get_array_module(self.data)
vectors = self.data / xp.linalg.norm(self.data, axis=1, keepdims=True)
best_rows = xp.zeros((queries.shape[0],), dtype='i')
scores = xp.zeros((queries.shape[0],), dtype='f')
# Work in batches, to avoid memory problems.
for i in range(0, queries.shape[0], batch_size):
batch = queries[i : i+batch_size]
batch /= xp.linalg.norm(batch, axis=1, keepdims=True)
# batch e.g. (1024, 300)
# vectors e.g. (10000, 300)
# sims e.g. (1024, 10000)
sims = xp.dot(batch, vectors.T)
best_rows[i:i+batch_size] = sims.argmax(axis=1)
scores[i:i+batch_size] = sims.max(axis=1)
xp = get_array_module(self.data)
row2key = {row: key for key, row in self.key2row.items()}
keys = xp.asarray([row2key[row] for row in best_rows], dtype='uint64')
return (keys, best_rows, scores)
def from_glove(self, path):
"""Load GloVe vectors from a directory. Assumes binary format,
that the vocab is in a vocab.txt, and that vectors are named
vectors.{size}.[fd].bin, e.g. vectors.128.f.bin for 128d float32
vectors, vectors.300.d.bin for 300d float64 (double) vectors, etc.
By default GloVe outputs 64-bit vectors.
path (unicode / Path): The path to load the GloVe vectors from.
RETURNS: A `StringStore` object, holding the key-to-string mapping.
"""
path = util.ensure_path(path)
width = None
for name in path.iterdir():
if name.parts[-1].startswith('vectors'):
_, dims, dtype, _2 = name.parts[-1].split('.')
width = int(dims)
break
else:
raise IOError("Expected file named e.g. vectors.128.f.bin")
bin_loc = path / 'vectors.{dims}.{dtype}.bin'.format(dims=dims,
dtype=dtype)
xp = get_array_module(self.data)
self.data = None
with bin_loc.open('rb') as file_:
self.data = xp.fromfile(file_, dtype=dtype)
if dtype != 'float32':
self.data = xp.ascontiguousarray(self.data, dtype='float32')
if self.data.ndim == 1:
self.data = self.data.reshape((self.data.size//width, width))
n = 0
strings = StringStore()
with (path / 'vocab.txt').open('r') as file_:
for i, line in enumerate(file_):
key = strings.add(line.strip())
self.add(key, row=i)
return strings
def to_disk(self, path, **exclude):
"""Save the current state to a directory.
path (unicode / Path): A path to a directory, which will be created if
it doesn't exists. Either a string or a Path-like object.
"""
xp = get_array_module(self.data)
if xp is numpy:
save_array = lambda arr, file_: xp.save(file_, arr,
allow_pickle=False)
else:
save_array = lambda arr, file_: xp.save(file_, arr)
serializers = OrderedDict((
('vectors', lambda p: save_array(self.data, p.open('wb'))),
('key2row', lambda p: msgpack.dump(self.key2row, p.open('wb')))
))
return util.to_disk(path, serializers, exclude)
def from_disk(self, path, **exclude):
"""Loads state from a directory. Modifies the object in place and
returns it.
path (unicode / Path): Directory path, string or Path-like object.
RETURNS (Vectors): The modified object.
"""
def load_key2row(path):
if path.exists():
with path.open('rb') as file_:
self.key2row = msgpack.load(file_)
for key, row in self.key2row.items():
if row in self._unset:
self._unset.remove(row)
def load_keys(path):
if path.exists():
keys = numpy.load(str(path))
for i, key in enumerate(keys):
self.add(key, row=i)
def load_vectors(path):
xp = Model.ops.xp
if path.exists():
self.data = xp.load(str(path))
serializers = OrderedDict((
('key2row', load_key2row),
('keys', load_keys),
('vectors', load_vectors),
))
util.from_disk(path, serializers, exclude)
return self
def to_bytes(self, **exclude):
"""Serialize the current state to a binary string.
**exclude: Named attributes to prevent from being serialized.
RETURNS (bytes): The serialized form of the `Vectors` object.
"""
def serialize_weights():
if hasattr(self.data, 'to_bytes'):
return self.data.to_bytes()
else:
return msgpack.dumps(self.data)
serializers = OrderedDict((
('key2row', lambda: msgpack.dumps(self.key2row)),
('vectors', serialize_weights)
))
return util.to_bytes(serializers, exclude)
def from_bytes(self, data, **exclude):
"""Load state from a binary string.
data (bytes): The data to load from.
**exclude: Named attributes to prevent from being loaded.
RETURNS (Vectors): The `Vectors` object.
"""
def deserialize_weights(b):
if hasattr(self.data, 'from_bytes'):
self.data.from_bytes()
else:
self.data = msgpack.loads(b)
deserializers = OrderedDict((
('key2row', lambda b: self.key2row.update(msgpack.loads(b))),
('vectors', deserialize_weights)
))
util.from_bytes(data, deserializers, exclude)
return self