mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
a7574b7572
Add meta option to supply path to meta.json. If no meta path is set, check if meta.json exists in input directory and use it. Otherwise, prompt for details on the command line.
134 lines
5.4 KiB
Python
134 lines
5.4 KiB
Python
# coding: utf8
|
|
from __future__ import print_function
|
|
# NB! This breaks in plac on Python 2!!
|
|
#from __future__ import unicode_literals
|
|
|
|
import plac
|
|
from spacy.cli import download as cli_download
|
|
from spacy.cli import link as cli_link
|
|
from spacy.cli import info as cli_info
|
|
from spacy.cli import package as cli_package
|
|
from spacy.cli import train as cli_train
|
|
from spacy.cli import model as cli_model
|
|
from spacy.cli import convert as cli_convert
|
|
|
|
|
|
class CLI(object):
|
|
"""
|
|
Command-line interface for spaCy
|
|
"""
|
|
commands = ('download', 'link', 'info', 'package', 'train', 'model', 'convert')
|
|
|
|
@plac.annotations(
|
|
model=("model to download (shortcut or model name)", "positional", None, str),
|
|
direct=("force direct download. Needs model name with version and won't "
|
|
"perform compatibility check", "flag", "d", bool)
|
|
)
|
|
def download(self, model=None, direct=False):
|
|
"""
|
|
Download compatible model from default download path using pip. Model
|
|
can be shortcut, model name or, if --direct flag is set, full model name
|
|
with version.
|
|
"""
|
|
cli_download(model, direct)
|
|
|
|
|
|
@plac.annotations(
|
|
origin=("package name or local path to model", "positional", None, str),
|
|
link_name=("name of shortuct link to create", "positional", None, str),
|
|
force=("force overwriting of existing link", "flag", "f", bool)
|
|
)
|
|
def link(self, origin, link_name, force=False):
|
|
"""
|
|
Create a symlink for models within the spacy/data directory. Accepts
|
|
either the name of a pip package, or the local path to the model data
|
|
directory. Linking models allows loading them via spacy.load(link_name).
|
|
"""
|
|
cli_link(origin, link_name, force)
|
|
|
|
|
|
@plac.annotations(
|
|
model=("optional: shortcut link of model", "positional", None, str),
|
|
markdown=("generate Markdown for GitHub issues", "flag", "md", str)
|
|
)
|
|
def info(self, model=None, markdown=False):
|
|
"""
|
|
Print info about spaCy installation. If a model shortcut link is
|
|
speficied as an argument, print model information. Flag --markdown
|
|
prints details in Markdown for easy copy-pasting to GitHub issues.
|
|
"""
|
|
cli_info(model, markdown)
|
|
|
|
|
|
@plac.annotations(
|
|
input_dir=("directory with model data", "positional", None, str),
|
|
output_dir=("output parent directory", "positional", None, str),
|
|
meta=("path to meta.json", "option", "m", str),
|
|
force=("force overwriting of existing folder in output directory", "flag", "f", bool)
|
|
)
|
|
def package(self, input_dir, output_dir, meta=None, force=False):
|
|
"""
|
|
Generate Python package for model data, including meta and required
|
|
installation files. A new directory will be created in the specified
|
|
output directory, and model data will be copied over.
|
|
"""
|
|
cli_package(input_dir, output_dir, meta, force)
|
|
|
|
|
|
@plac.annotations(
|
|
lang=("model language", "positional", None, str),
|
|
output_dir=("output directory to store model in", "positional", None, str),
|
|
train_data=("location of JSON-formatted training data", "positional", None, str),
|
|
dev_data=("location of JSON-formatted development data (optional)", "positional", None, str),
|
|
n_iter=("number of iterations", "option", "n", int),
|
|
parser_L1=("L1 regularization penalty for parser", "option", "L", float),
|
|
no_tagger=("Don't train tagger", "flag", "T", bool),
|
|
no_parser=("Don't train parser", "flag", "P", bool),
|
|
no_ner=("Don't train NER", "flag", "N", bool)
|
|
)
|
|
def train(self, lang, output_dir, train_data, dev_data=None, n_iter=15,
|
|
parser_L1=0.0, no_tagger=False, no_parser=False, no_ner=False):
|
|
"""
|
|
Train a model. Expects data in spaCy's JSON format.
|
|
"""
|
|
cli_train(lang, output_dir, train_data, dev_data, n_iter, not no_tagger,
|
|
not no_parser, not no_ner, parser_L1)
|
|
|
|
@plac.annotations(
|
|
lang=("model language", "positional", None, str),
|
|
model_dir=("output directory to store model in", "positional", None, str),
|
|
freqs_data=("tab-separated frequencies file", "positional", None, str),
|
|
clusters_data=("Brown clusters file", "positional", None, str),
|
|
vectors_data=("word vectors file", "positional", None, str)
|
|
)
|
|
def model(self, lang, model_dir, freqs_data, clusters_data=None, vectors_data=None):
|
|
"""
|
|
Initialize a new model and its data directory.
|
|
"""
|
|
cli_model(lang, model_dir, freqs_data, clusters_data, vectors_data)
|
|
|
|
@plac.annotations(
|
|
input_file=("input file", "positional", None, str),
|
|
output_dir=("output directory for converted file", "positional", None, str),
|
|
n_sents=("Number of sentences per doc", "option", "n", float),
|
|
morphology=("Enable appending morphology to tags", "flag", "m", bool)
|
|
)
|
|
def convert(self, input_file, output_dir, n_sents=10, morphology=False):
|
|
"""
|
|
Convert files into JSON format for use with train command and other
|
|
experiment management functions.
|
|
"""
|
|
cli_convert(input_file, output_dir, n_sents, morphology)
|
|
|
|
|
|
def __missing__(self, name):
|
|
print("\n Command %r does not exist."
|
|
"\n Use the --help flag for a list of available commands.\n" % name)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import plac
|
|
import sys
|
|
sys.argv[0] = 'spacy'
|
|
plac.Interpreter.call(CLI)
|