mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			90 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
'''Print part-of-speech tagged, true-cased, (very roughly) sentence-separated
 | 
						|
text, with each "sentence" on a newline, and spaces between tokens. Supports
 | 
						|
multi-processing.
 | 
						|
'''
 | 
						|
from __future__ import print_function, unicode_literals, division
 | 
						|
import io
 | 
						|
import bz2
 | 
						|
import logging
 | 
						|
from toolz import partition
 | 
						|
from os import path
 | 
						|
 | 
						|
import spacy.en
 | 
						|
 | 
						|
from joblib import Parallel, delayed
 | 
						|
import plac
 | 
						|
import ujson
 | 
						|
 | 
						|
 | 
						|
def parallelize(func, iterator, n_jobs, extra):
 | 
						|
    extra = tuple(extra)
 | 
						|
    return Parallel(n_jobs=n_jobs)(delayed(func)(*(item + extra)) for item in iterator)
 | 
						|
 | 
						|
 | 
						|
def iter_texts_from_json_bz2(loc):
 | 
						|
    '''
 | 
						|
    Iterator of unicode strings, one per document (here, a comment).
 | 
						|
    
 | 
						|
    Expects a a path to a BZ2 file, which should be new-line delimited JSON. The
 | 
						|
    document text should be in a string field titled 'body'.
 | 
						|
 | 
						|
    This is the data format of the Reddit comments corpus.
 | 
						|
    '''
 | 
						|
    with bz2.BZ2File(loc) as file_:
 | 
						|
        for i, line in enumerate(file_):
 | 
						|
            yield ujson.loads(line)['body']
 | 
						|
 | 
						|
 | 
						|
def transform_texts(batch_id, input_, out_dir):
 | 
						|
    out_loc = path.join(out_dir, '%d.txt' % batch_id)
 | 
						|
    if path.exists(out_loc):
 | 
						|
        return None
 | 
						|
    print('Batch', batch_id)
 | 
						|
    nlp = spacy.en.English(parser=False, entity=False)
 | 
						|
    with io.open(out_loc, 'w', encoding='utf8') as file_:
 | 
						|
        for text in input_:
 | 
						|
            doc = nlp(text)
 | 
						|
            file_.write(' '.join(represent_word(w) for w in doc if not w.is_space))
 | 
						|
            file_.write('\n')
 | 
						|
 | 
						|
 | 
						|
def represent_word(word):
 | 
						|
    text = word.text
 | 
						|
    # True-case, i.e. try to normalize sentence-initial capitals.
 | 
						|
    # Only do this if the lower-cased form is more probable.
 | 
						|
    if text.istitle() \
 | 
						|
    and is_sent_begin(word) \
 | 
						|
    and word.prob < word.vocab[text.lower()].prob:
 | 
						|
        text = text.lower()
 | 
						|
    return text + '|' + word.tag_
 | 
						|
 | 
						|
 | 
						|
def is_sent_begin(word):
 | 
						|
    # It'd be nice to have some heuristics like these in the library, for these
 | 
						|
    # times where we don't care so much about accuracy of SBD, and we don't want
 | 
						|
    # to parse
 | 
						|
    if word.i == 0:
 | 
						|
        return True
 | 
						|
    elif word.i >= 2 and word.nbor(-1).text in ('.', '!', '?', '...'):
 | 
						|
        return True
 | 
						|
    else:
 | 
						|
        return False
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    in_loc=("Location of input file"),
 | 
						|
    out_dir=("Location of input file"),
 | 
						|
    n_workers=("Number of workers", "option", "n", int),
 | 
						|
    batch_size=("Batch-size for each process", "option", "b", int)
 | 
						|
)
 | 
						|
def main(in_loc, out_dir, n_workers=4, batch_size=100000):
 | 
						|
    if not path.exists(out_dir):
 | 
						|
        path.join(out_dir)
 | 
						|
    texts = partition(batch_size, iter_texts(in_loc))
 | 
						|
    parallelize(transform_texts, enumerate(texts), n_workers, [out_dir])
 | 
						|
 
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    plac.call(main)
 | 
						|
 |