mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			68 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.gold import Example
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.tests.util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    senter = nlp.add_pipe("senter")
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        senter.add_label("A")
 | 
						|
 | 
						|
 | 
						|
SENT_STARTS = [0] * 14
 | 
						|
SENT_STARTS[0] = 1
 | 
						|
SENT_STARTS[5] = 1
 | 
						|
SENT_STARTS[9] = 1
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        "I like green eggs. Eat blue ham. I like purple eggs.",
 | 
						|
        {"sent_starts": SENT_STARTS},
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        "She likes purple eggs. They hate ham. You like yellow eggs.",
 | 
						|
        {"sent_starts": SENT_STARTS},
 | 
						|
    ),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    # add some cases where SENT_START == -1
 | 
						|
    train_examples[0].reference[10].is_sent_start = False
 | 
						|
    train_examples[1].reference[1].is_sent_start = False
 | 
						|
    train_examples[1].reference[11].is_sent_start = False
 | 
						|
 | 
						|
    nlp.add_pipe("senter")
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
 | 
						|
    for i in range(200):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["senter"] < 0.001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = TRAIN_DATA[0][0]
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_sent_starts = [0] * 14
 | 
						|
    gold_sent_starts[0] = 1
 | 
						|
    gold_sent_starts[5] = 1
 | 
						|
    gold_sent_starts[9] = 1
 | 
						|
    assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
 |