mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			158 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf-8
 | 
						|
"""Using the parser to recognise your own semantics
 | 
						|
 | 
						|
spaCy's parser component can be used to trained to predict any type of tree
 | 
						|
structure over your input text. You can also predict trees over whole documents
 | 
						|
or chat logs, with connections between the sentence-roots used to annotate
 | 
						|
discourse structure. In this example, we'll build a message parser for a common
 | 
						|
"chat intent": finding local businesses. Our message semantics will have the
 | 
						|
following types of relations: ROOT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION.
 | 
						|
 | 
						|
"show me the best hotel in berlin"
 | 
						|
('show', 'ROOT', 'show')
 | 
						|
('best', 'QUALITY', 'hotel') --> hotel with QUALITY best
 | 
						|
('hotel', 'PLACE', 'show') --> show PLACE hotel
 | 
						|
('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import random
 | 
						|
import spacy
 | 
						|
from spacy.gold import GoldParse
 | 
						|
from spacy.tokens import Doc
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
 | 
						|
# training data: words, head and dependency labels
 | 
						|
# for no relation, we simply chose an arbitrary dependency label, e.g. '-'
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        ['find', 'a', 'cafe', 'with', 'great', 'wifi'],
 | 
						|
        [0, 2, 0, 5, 5, 2],  # index of token head
 | 
						|
        ['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE']
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        ['find', 'a', 'hotel', 'near', 'the', 'beach'],
 | 
						|
        [0, 2, 0, 5, 5, 2],
 | 
						|
        ['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE']
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        ['find', 'me', 'the', 'closest', 'gym', 'that', "'s", 'open', 'late'],
 | 
						|
        [0, 0, 4, 4, 0, 6, 4, 6, 6],
 | 
						|
        ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME']
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        ['show', 'me', 'the', 'cheapest', 'store', 'that', 'sells', 'flowers'],
 | 
						|
        [0, 0, 4, 4, 0, 4, 4, 4],  # attach "flowers" to store!
 | 
						|
        ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT']
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        ['find', 'a', 'nice', 'restaurant', 'in', 'london'],
 | 
						|
        [0, 3, 3, 0, 3, 3],
 | 
						|
        ['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        ['show', 'me', 'the', 'coolest', 'hostel', 'in', 'berlin'],
 | 
						|
        [0, 0, 4, 4, 0, 4, 4],
 | 
						|
        ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        ['find', 'a', 'good', 'italian', 'restaurant', 'near', 'work'],
 | 
						|
        [0, 4, 4, 4, 0, 4, 5],
 | 
						|
        ['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION']
 | 
						|
    )
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | 
						|
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						|
    n_iter=("Number of training iterations", "option", "n", int))
 | 
						|
def main(model=None, output_dir=None, n_iter=100):
 | 
						|
    """Load the model, set up the pipeline and train the parser."""
 | 
						|
    if model is not None:
 | 
						|
        nlp = spacy.load(model)  # load existing spaCy model
 | 
						|
        print("Loaded model '%s'" % model)
 | 
						|
    else:
 | 
						|
        nlp = spacy.blank('en')  # create blank Language class
 | 
						|
        print("Created blank 'en' model")
 | 
						|
 | 
						|
    # add the parser to the pipeline if it doesn't exist
 | 
						|
    # nlp.create_pipe works for built-ins that are registered with spaCy
 | 
						|
    if 'parser' not in nlp.pipe_names:
 | 
						|
        parser = nlp.create_pipe('parser')
 | 
						|
        nlp.add_pipe(parser, first=True)
 | 
						|
    # otherwise, get it, so we can add labels to it
 | 
						|
    else:
 | 
						|
        parser = nlp.get_pipe('parser')
 | 
						|
 | 
						|
    for _, _, deps in TRAIN_DATA:
 | 
						|
        for dep in deps:
 | 
						|
            parser.add_label(dep)
 | 
						|
 | 
						|
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
 | 
						|
    with nlp.disable_pipes(*other_pipes):  # only train parser
 | 
						|
        optimizer = nlp.begin_training(lambda: [])
 | 
						|
        for itn in range(n_iter):
 | 
						|
            random.shuffle(TRAIN_DATA)
 | 
						|
            losses = {}
 | 
						|
            for words, heads, deps in TRAIN_DATA:
 | 
						|
                doc = Doc(nlp.vocab, words=words)
 | 
						|
                gold = GoldParse(doc, heads=heads, deps=deps)
 | 
						|
                nlp.update([doc], [gold], sgd=optimizer, losses=losses)
 | 
						|
            print(losses)
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_model(nlp)
 | 
						|
 | 
						|
    # save model to output directory
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
        nlp.to_disk(output_dir)
 | 
						|
        print("Saved model to", output_dir)
 | 
						|
 | 
						|
        # test the saved model
 | 
						|
        print("Loading from", output_dir)
 | 
						|
        nlp2 = spacy.load(output_dir)
 | 
						|
        test_model(nlp2)
 | 
						|
 | 
						|
 | 
						|
def test_model(nlp):
 | 
						|
    texts = ["find a hotel with good wifi",
 | 
						|
             "find me the cheapest gym near work",
 | 
						|
             "show me the best hotel in berlin"]
 | 
						|
    docs = nlp.pipe(texts)
 | 
						|
    for doc in docs:
 | 
						|
        print(doc.text)
 | 
						|
        print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-'])
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    plac.call(main)
 | 
						|
 | 
						|
    # Expected output:
 | 
						|
    # find a hotel with good wifi
 | 
						|
    # [
 | 
						|
    #   ('find', 'ROOT', 'find'),
 | 
						|
    #   ('hotel', 'PLACE', 'find'),
 | 
						|
    #   ('good', 'QUALITY', 'wifi'),
 | 
						|
    #   ('wifi', 'ATTRIBUTE', 'hotel')
 | 
						|
    # ]
 | 
						|
    # find me the cheapest gym near work
 | 
						|
    # [
 | 
						|
    #   ('find', 'ROOT', 'find'),
 | 
						|
    #   ('cheapest', 'QUALITY', 'gym'),
 | 
						|
    #   ('gym', 'PLACE', 'find')
 | 
						|
    # ]
 | 
						|
    # show me the best hotel in berlin
 | 
						|
    # [
 | 
						|
    #   ('show', 'ROOT', 'show'),
 | 
						|
    #   ('best', 'QUALITY', 'hotel'),
 | 
						|
    #   ('hotel', 'PLACE', 'show'),
 | 
						|
    #   ('berlin', 'LOCATION', 'hotel')
 | 
						|
    # ]
 |