spaCy/spacy/pipeline/morphologizer.pyx
2020-07-29 14:01:12 +02:00

313 lines
11 KiB
Cython

# cython: infer_types=True, profile=True, binding=True
from typing import Optional
import srsly
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
from ..tokens.doc cimport Doc
from ..vocab cimport Vocab
from ..morphology cimport Morphology
from ..parts_of_speech import IDS as POS_IDS
from ..symbols import POS
from ..language import Language
from ..errors import Errors
from .pipe import deserialize_config
from .tagger import Tagger
from .. import util
from ..scorer import Scorer
default_model_config = """
[model]
@architectures = "spacy.Tagger.v1"
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v1"
[model.tok2vec.embed]
@architectures = "spacy.CharacterEmbed.v1"
width = 128
rows = 7000
nM = 64
nC = 8
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = 128
depth = 4
window_size = 1
maxout_pieces = 3
"""
DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={"model": DEFAULT_MORPH_MODEL},
scores=["pos_acc", "morph_acc", "morph_per_feat"],
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5},
)
def make_morphologizer(
nlp: Language,
model: Model,
name: str,
):
return Morphologizer(nlp.vocab, model, name)
class Morphologizer(Tagger):
POS_FEAT = "POS"
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "morphologizer",
*,
labels_morph: Optional[dict] = None,
labels_pos: Optional[dict] = None,
):
"""Initialize a morphologizer.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
labels_morph (dict): TODO:
labels_pos (dict): TODO:
DOCS: https://spacy.io/api/morphologizer#init
"""
self.vocab = vocab
self.model = model
self.name = name
self._rehearsal_model = None
# to be able to set annotations without string operations on labels,
# store mappings from morph+POS labels to token-level annotations:
# 1) labels_morph stores a mapping from morph+POS->morph
# 2) labels_pos stores a mapping from morph+POS->POS
cfg = {"labels_morph": labels_morph or {}, "labels_pos": labels_pos or {}}
self.cfg = dict(sorted(cfg.items()))
# add mappings for empty morph
self.cfg["labels_morph"][Morphology.EMPTY_MORPH] = Morphology.EMPTY_MORPH
self.cfg["labels_pos"][Morphology.EMPTY_MORPH] = POS_IDS[""]
@property
def labels(self):
"""RETURNS (Tuple[str]): The labels currently added to the component."""
return tuple(self.cfg["labels_morph"].keys())
def add_label(self, label):
"""Add a new label to the pipe.
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/morphologizer#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
# normalize label
norm_label = self.vocab.morphology.normalize_features(label)
# extract separate POS and morph tags
label_dict = Morphology.feats_to_dict(label)
pos = label_dict.get(self.POS_FEAT, "")
if self.POS_FEAT in label_dict:
label_dict.pop(self.POS_FEAT)
# normalize morph string and add to morphology table
norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
# add label mappings
if norm_label not in self.cfg["labels_morph"]:
self.cfg["labels_morph"][norm_label] = norm_morph
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
return 1
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
"""Initialize the pipe for training, using data examples if available.
get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/morphologizer#begin_training
"""
for example in get_examples():
for i, token in enumerate(example.reference):
pos = token.pos_
morph = token.morph_
# create and add the combined morph+POS label
morph_dict = Morphology.feats_to_dict(morph)
if pos:
morph_dict[self.POS_FEAT] = pos
norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
# add label->morph and label->POS mappings
if norm_label not in self.cfg["labels_morph"]:
self.cfg["labels_morph"][norm_label] = morph
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
self.set_output(len(self.labels))
self.model.initialize()
if sgd is None:
sgd = self.create_optimizer()
return sgd
def set_annotations(self, docs, batch_tag_ids):
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
DOCS: https://spacy.io/api/morphologizer#predict
"""
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef Vocab vocab = self.vocab
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()
for j, tag_id in enumerate(doc_tag_ids):
morph = self.labels[tag_id]
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"][morph])
doc.c[j].pos = self.cfg["labels_pos"][morph]
doc.is_morphed = True
def get_loss(self, examples, scores):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/morphologizer#get_loss
"""
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
truths = []
for eg in examples:
eg_truths = []
pos_tags = eg.get_aligned("POS", as_string=True)
morphs = eg.get_aligned("MORPH", as_string=True)
for i in range(len(morphs)):
pos = pos_tags[i]
morph = morphs[i]
# POS may align (same value for multiple tokens) when morph
# doesn't, so if either is None, treat both as None here so that
# truths doesn't end up with an unknown morph+POS combination
if pos is None or morph is None:
pos = None
morph = None
label_dict = Morphology.feats_to_dict(morph)
if pos:
label_dict[self.POS_FEAT] = pos
label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
eg_truths.append(label)
truths.append(eg_truths)
d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss):
raise ValueError("nan value when computing loss")
return float(loss), d_scores
def score(self, examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by
Scorer.score_token_attr for the attributes "pos" and "morph" and
Scorer.score_token_attr_per_feat for the attribute "morph".
DOCS: https://spacy.io/api/morphologizer#score
"""
results = {}
results.update(Scorer.score_token_attr(examples, "pos", **kwargs))
results.update(Scorer.score_token_attr(examples, "morph", **kwargs))
results.update(Scorer.score_token_attr_per_feat(examples,
"morph", **kwargs))
return results
def to_bytes(self, exclude=tuple()):
"""Serialize the pipe to a bytestring.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/morphologizer#to_bytes
"""
serialize = {}
serialize["model"] = self.model.to_bytes
serialize["vocab"] = self.vocab.to_bytes
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, exclude=tuple()):
"""Load the pipe from a bytestring.
bytes_data (bytes): The serialized pipe.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Morphologizer): The loaded Morphologizer.
DOCS: https://spacy.io/api/morphologizer#from_bytes
"""
def load_model(b):
try:
self.model.from_bytes(b)
except AttributeError:
raise ValueError(Errors.E149)
deserialize = {
"vocab": lambda b: self.vocab.from_bytes(b),
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"model": lambda b: load_model(b),
}
util.from_bytes(bytes_data, deserialize, exclude)
return self
def to_disk(self, path, exclude=tuple()):
"""Serialize the pipe to disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/morphologizer#to_disk
"""
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
"model": lambda p: p.open("wb").write(self.model.to_bytes()),
"cfg": lambda p: srsly.write_json(p, self.cfg),
}
util.to_disk(path, serialize, exclude)
def from_disk(self, path, exclude=tuple()):
"""Load the pipe from disk. Modifies the object in place and returns it.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Morphologizer): The modified Morphologizer object.
DOCS: https://spacy.io/api/morphologizer#from_disk
"""
def load_model(p):
with p.open("rb") as file_:
try:
self.model.from_bytes(file_.read())
except AttributeError:
raise ValueError(Errors.E149)
deserialize = {
"vocab": lambda p: self.vocab.from_disk(p),
"cfg": lambda p: self.cfg.update(deserialize_config(p)),
"model": load_model,
}
util.from_disk(path, deserialize, exclude)
return self