mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Thinc layer to do simpler transition-based parsing, NER, etc."""
 | 
						|
from typing import Dict, Optional
 | 
						|
from thinc.api import Ops, Model
 | 
						|
from thinc.types import Padded, Floats3d
 | 
						|
 | 
						|
 | 
						|
def IOB() -> Model[Padded, Padded]:
 | 
						|
    return Model(
 | 
						|
        "biluo",
 | 
						|
        forward,
 | 
						|
        init=init,
 | 
						|
        dims={"nO": None},
 | 
						|
        attrs={"get_num_actions": get_num_actions},
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def init(model, X: Optional[Padded] = None, Y: Optional[Padded] = None):
 | 
						|
    if X is not None and Y is not None:
 | 
						|
        if X.data.shape != Y.data.shape:
 | 
						|
            # TODO: Fix error
 | 
						|
            raise ValueError("Mismatched shapes (TODO: Fix message)")
 | 
						|
        model.set_dim("nO", X.data.shape[2])
 | 
						|
    elif X is not None:
 | 
						|
        model.set_dim("nO", X.data.shape[2])
 | 
						|
    elif Y is not None:
 | 
						|
        model.set_dim("nO", Y.data.shape[2])
 | 
						|
    elif model.get_dim("nO") is None:
 | 
						|
        raise ValueError("Dimension unset for BILUO: nO")
 | 
						|
 | 
						|
 | 
						|
def forward(model: Model[Padded, Padded], Xp: Padded, is_train: bool):
 | 
						|
    n_labels = (model.get_dim("nO") - 1) // 2
 | 
						|
    n_tokens, n_docs, n_actions = Xp.data.shape
 | 
						|
    # At each timestep, we make a validity mask of shape (n_docs, n_actions)
 | 
						|
    # to indicate which actions are valid next for each sequence. To construct
 | 
						|
    # the mask, we have a state of shape (2, n_actions) and a validity table of
 | 
						|
    # shape (2, n_actions+1, n_actions). The first dimension of the state indicates
 | 
						|
    # whether it's the last token, the second dimension indicates the previous
 | 
						|
    # action, plus a special 'null action' for the first entry.
 | 
						|
    valid_transitions = _get_transition_table(model.ops, n_labels)
 | 
						|
    prev_actions = model.ops.alloc1i(n_docs)
 | 
						|
    # Initialize as though prev action was O
 | 
						|
    prev_actions.fill(n_actions - 1)
 | 
						|
    Y = model.ops.alloc3f(*Xp.data.shape)
 | 
						|
    masks = model.ops.alloc3f(*Y.shape)
 | 
						|
    for t in range(Xp.data.shape[0]):
 | 
						|
        masks[t] = valid_transitions[prev_actions]
 | 
						|
        # Don't train the out-of-bounds sequences.
 | 
						|
        masks[t, Xp.size_at_t[t] :] = 0
 | 
						|
        # Valid actions get 0*10e8, invalid get -1*10e8
 | 
						|
        Y[t] = Xp.data[t] + ((masks[t] - 1) * 10e8)
 | 
						|
        prev_actions = Y[t].argmax(axis=-1)
 | 
						|
 | 
						|
    def backprop_biluo(dY: Padded) -> Padded:
 | 
						|
        # Masking the gradient seems to do poorly here. But why?
 | 
						|
        # dY.data *= masks
 | 
						|
        return dY
 | 
						|
 | 
						|
    return Padded(Y, Xp.size_at_t, Xp.lengths, Xp.indices), backprop_biluo
 | 
						|
 | 
						|
 | 
						|
def get_num_actions(n_labels: int) -> int:
 | 
						|
    # One BEGIN action per label
 | 
						|
    # One IN action per label
 | 
						|
    # One LAST action per label
 | 
						|
    # One UNIT action per label
 | 
						|
    # One OUT action
 | 
						|
    return n_labels * 2 + 1
 | 
						|
 | 
						|
 | 
						|
def _get_transition_table(
 | 
						|
    ops: Ops, n_labels: int, _cache: Dict[int, Floats3d] = {}
 | 
						|
) -> Floats3d:
 | 
						|
    n_actions = get_num_actions(n_labels)
 | 
						|
    if n_actions in _cache:
 | 
						|
        return ops.asarray(_cache[n_actions])
 | 
						|
    table = ops.alloc2f(n_actions, n_actions)
 | 
						|
    B_start, B_end = (0, n_labels)
 | 
						|
    I_start, I_end = (B_end, B_end + n_labels)
 | 
						|
    O_action = I_end
 | 
						|
    B_range = ops.xp.arange(B_start, B_end)
 | 
						|
    I_range = ops.xp.arange(I_start, I_end)
 | 
						|
    # B and O are always valid
 | 
						|
    table[:, B_start:B_end] = 1
 | 
						|
    table[:, O_action] = 1
 | 
						|
    # I can only follow a matching B
 | 
						|
    table[B_range, I_range] = 1
 | 
						|
 | 
						|
    _cache[n_actions] = table
 | 
						|
    return table
 |