mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
420 lines
15 KiB
Cython
420 lines
15 KiB
Cython
# coding: utf8
|
||
from __future__ import unicode_literals
|
||
from collections import defaultdict
|
||
|
||
cimport numpy as np
|
||
import numpy
|
||
import numpy.linalg
|
||
from libc.math cimport sqrt
|
||
|
||
from .doc cimport token_by_start, token_by_end
|
||
from ..structs cimport TokenC, LexemeC
|
||
from ..typedefs cimport flags_t, attr_t, hash_t
|
||
from ..attrs cimport attr_id_t
|
||
from ..parts_of_speech cimport univ_pos_t
|
||
from ..util import normalize_slice
|
||
from ..attrs cimport IS_PUNCT, IS_SPACE
|
||
from ..lexeme cimport Lexeme
|
||
from ..compat import is_config
|
||
from .. import about
|
||
|
||
|
||
cdef class Span:
|
||
"""
|
||
A slice from a Doc object.
|
||
"""
|
||
def __cinit__(self, Doc doc, int start, int end, int label=0, vector=None,
|
||
vector_norm=None):
|
||
"""
|
||
Create a Span object from the slice doc[start : end]
|
||
|
||
Arguments:
|
||
doc (Doc): The parent document.
|
||
start (int): The index of the first token of the span.
|
||
end (int): The index of the first token after the span.
|
||
label (int): A label to attach to the Span, e.g. for named entities.
|
||
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of the span.
|
||
Returns:
|
||
Span The newly constructed object.
|
||
"""
|
||
if not (0 <= start <= end <= len(doc)):
|
||
raise IndexError
|
||
|
||
self.doc = doc
|
||
self.start = start
|
||
self.start_char = self.doc[start].idx if start < self.doc.length else 0
|
||
self.end = end
|
||
if end >= 1:
|
||
self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1])
|
||
else:
|
||
self.end_char = 0
|
||
self.label = label
|
||
self._vector = vector
|
||
self._vector_norm = vector_norm
|
||
|
||
def __richcmp__(self, Span other, int op):
|
||
# Eq
|
||
if op == 0:
|
||
return self.start_char < other.start_char
|
||
elif op == 1:
|
||
return self.start_char <= other.start_char
|
||
elif op == 2:
|
||
return self.start_char == other.start_char and self.end_char == other.end_char
|
||
elif op == 3:
|
||
return self.start_char != other.start_char or self.end_char != other.end_char
|
||
elif op == 4:
|
||
return self.start_char > other.start_char
|
||
elif op == 5:
|
||
return self.start_char >= other.start_char
|
||
|
||
def __hash__(self):
|
||
return hash((self.doc, self.label, self.start_char, self.end_char))
|
||
|
||
|
||
def __len__(self):
|
||
self._recalculate_indices()
|
||
if self.end < self.start:
|
||
return 0
|
||
return self.end - self.start
|
||
|
||
def __repr__(self):
|
||
if is_config(python3=True):
|
||
return self.text
|
||
return self.text.encode('utf-8')
|
||
|
||
def __getitem__(self, object i):
|
||
self._recalculate_indices()
|
||
if isinstance(i, slice):
|
||
start, end = normalize_slice(len(self), i.start, i.stop, i.step)
|
||
return Span(self.doc, start + self.start, end + self.start)
|
||
else:
|
||
if i < 0:
|
||
return self.doc[self.end + i]
|
||
else:
|
||
return self.doc[self.start + i]
|
||
|
||
def __iter__(self):
|
||
self._recalculate_indices()
|
||
for i in range(self.start, self.end):
|
||
yield self.doc[i]
|
||
|
||
def merge(self, *args, **attributes):
|
||
"""
|
||
Retokenize the document, such that the span is merged into a single token.
|
||
|
||
Arguments:
|
||
**attributes:
|
||
Attributes to assign to the merged token. By default, attributes
|
||
are inherited from the syntactic root token of the span.
|
||
Returns:
|
||
token (Token):
|
||
The newly merged token.
|
||
"""
|
||
return self.doc.merge(self.start_char, self.end_char, *args, **attributes)
|
||
|
||
def similarity(self, other):
|
||
"""
|
||
Make a semantic similarity estimate. The default estimate is cosine
|
||
similarity using an average of word vectors.
|
||
|
||
Arguments:
|
||
other (object): The object to compare with. By default, accepts Doc,
|
||
Span, Token and Lexeme objects.
|
||
|
||
Return:
|
||
score (float): A scalar similarity score. Higher is more similar.
|
||
"""
|
||
if 'similarity' in self.doc.user_span_hooks:
|
||
self.doc.user_span_hooks['similarity'](self, other)
|
||
if self.vector_norm == 0.0 or other.vector_norm == 0.0:
|
||
return 0.0
|
||
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||
|
||
cpdef int _recalculate_indices(self) except -1:
|
||
if self.end > self.doc.length \
|
||
or self.doc.c[self.start].idx != self.start_char \
|
||
or (self.doc.c[self.end-1].idx + self.doc.c[self.end-1].lex.length) != self.end_char:
|
||
start = token_by_start(self.doc.c, self.doc.length, self.start_char)
|
||
if self.start == -1:
|
||
raise IndexError("Error calculating span: Can't find start")
|
||
end = token_by_end(self.doc.c, self.doc.length, self.end_char)
|
||
if end == -1:
|
||
raise IndexError("Error calculating span: Can't find end")
|
||
|
||
self.start = start
|
||
self.end = end + 1
|
||
|
||
property sent:
|
||
"""
|
||
The sentence span that this span is a part of.
|
||
|
||
Returns:
|
||
Span The sentence this is part of.
|
||
"""
|
||
def __get__(self):
|
||
if 'sent' in self.doc.user_span_hooks:
|
||
return self.doc.user_span_hooks['sent'](self)
|
||
# This should raise if we're not parsed.
|
||
self.doc.sents
|
||
cdef int n = 0
|
||
root = &self.doc.c[self.start]
|
||
while root.head != 0:
|
||
root += root.head
|
||
n += 1
|
||
if n >= self.doc.length:
|
||
raise RuntimeError
|
||
return self.doc[root.l_edge : root.r_edge + 1]
|
||
|
||
property has_vector:
|
||
def __get__(self):
|
||
if 'has_vector' in self.doc.user_span_hooks:
|
||
return self.doc.user_span_hooks['has_vector'](self)
|
||
return any(token.has_vector for token in self)
|
||
|
||
property vector:
|
||
def __get__(self):
|
||
if 'vector' in self.doc.user_span_hooks:
|
||
return self.doc.user_span_hooks['vector'](self)
|
||
if self._vector is None:
|
||
self._vector = sum(t.vector for t in self) / len(self)
|
||
return self._vector
|
||
|
||
property vector_norm:
|
||
def __get__(self):
|
||
if 'vector_norm' in self.doc.user_span_hooks:
|
||
return self.doc.user_span_hooks['vector'](self)
|
||
cdef float value
|
||
cdef double norm = 0
|
||
if self._vector_norm is None:
|
||
norm = 0
|
||
for value in self.vector:
|
||
norm += value * value
|
||
self._vector_norm = sqrt(norm) if norm != 0 else 0
|
||
return self._vector_norm
|
||
|
||
property sentiment:
|
||
def __get__(self):
|
||
if 'sentiment' in self.doc.user_span_hooks:
|
||
return self.doc.user_span_hooks['sentiment'](self)
|
||
else:
|
||
return sum([token.sentiment for token in self]) / len(self)
|
||
|
||
property text:
|
||
def __get__(self):
|
||
text = self.text_with_ws
|
||
if self[-1].whitespace_:
|
||
text = text[:-1]
|
||
return text
|
||
|
||
property text_with_ws:
|
||
def __get__(self):
|
||
return u''.join([t.text_with_ws for t in self])
|
||
|
||
property noun_chunks:
|
||
"""
|
||
Yields base noun-phrase #[code Span] objects, if the document
|
||
has been syntactically parsed. A base noun phrase, or
|
||
'NP chunk', is a noun phrase that does not permit other NPs to
|
||
be nested within it – so no NP-level coordination, no prepositional
|
||
phrases, and no relative clauses. For example:
|
||
"""
|
||
def __get__(self):
|
||
if not self.doc.is_parsed:
|
||
raise ValueError(
|
||
"noun_chunks requires the dependency parse, which "
|
||
"requires data to be installed. For more info, see the "
|
||
"documentation: \n%s\n" % about.__docs_models__)
|
||
# Accumulate the result before beginning to iterate over it. This prevents
|
||
# the tokenisation from being changed out from under us during the iteration.
|
||
# The tricky thing here is that Span accepts its tokenisation changing,
|
||
# so it's okay once we have the Span objects. See Issue #375
|
||
spans = []
|
||
for start, end, label in self.doc.noun_chunks_iterator(self):
|
||
spans.append(Span(self, start, end, label=label))
|
||
for span in spans:
|
||
yield span
|
||
|
||
property root:
|
||
"""
|
||
The token within the span that's highest in the parse tree. If there's a
|
||
tie, the earlist is prefered.
|
||
|
||
Returns:
|
||
Token: The root token.
|
||
|
||
i.e. has the shortest path to the root of the sentence (or is the root
|
||
itself). If multiple words are equally high in the tree, the first word
|
||
is taken. For example:
|
||
|
||
>>> toks = nlp(u'I like New York in Autumn.')
|
||
|
||
Let's name the indices --- easier than writing "toks[4]" etc.
|
||
|
||
>>> i, like, new, york, in_, autumn, dot = range(len(toks))
|
||
|
||
The head of 'new' is 'York', and the head of 'York' is 'like'
|
||
|
||
>>> toks[new].head.orth_
|
||
'York'
|
||
>>> toks[york].head.orth_
|
||
'like'
|
||
|
||
Create a span for "New York". Its root is "York".
|
||
|
||
>>> new_york = toks[new:york+1]
|
||
>>> new_york.root.orth_
|
||
'York'
|
||
|
||
Here's a more complicated case, raise by Issue #214
|
||
|
||
>>> toks = nlp(u'to, north and south carolina')
|
||
>>> to, north, and_, south, carolina = toks
|
||
>>> south.head.text, carolina.head.text
|
||
('north', 'to')
|
||
|
||
Here 'south' is a child of 'north', which is a child of 'carolina'.
|
||
Carolina is the root of the span:
|
||
|
||
>>> south_carolina = toks[-2:]
|
||
>>> south_carolina.root.text
|
||
'carolina'
|
||
"""
|
||
def __get__(self):
|
||
self._recalculate_indices()
|
||
if 'root' in self.doc.user_span_hooks:
|
||
return self.doc.user_span_hooks['root'](self)
|
||
# This should probably be called 'head', and the other one called
|
||
# 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/
|
||
cdef int i
|
||
# First, we scan through the Span, and check whether there's a word
|
||
# with head==0, i.e. a sentence root. If so, we can return it. The
|
||
# longer the span, the more likely it contains a sentence root, and
|
||
# in this case we return in linear time.
|
||
for i in range(self.start, self.end):
|
||
if self.doc.c[i].head == 0:
|
||
return self.doc[i]
|
||
# If we don't have a sentence root, we do something that's not so
|
||
# algorithmically clever, but I think should be quite fast, especially
|
||
# for short spans.
|
||
# For each word, we count the path length, and arg min this measure.
|
||
# We could use better tree logic to save steps here...But I think this
|
||
# should be okay.
|
||
cdef int current_best = self.doc.length
|
||
cdef int root = -1
|
||
for i in range(self.start, self.end):
|
||
if self.start <= (i+self.doc.c[i].head) < self.end:
|
||
continue
|
||
words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
|
||
if words_to_root < current_best:
|
||
current_best = words_to_root
|
||
root = i
|
||
if root == -1:
|
||
return self.doc[self.start]
|
||
else:
|
||
return self.doc[root]
|
||
|
||
property lefts:
|
||
"""
|
||
Tokens that are to the left of the span, whose head is within the Span.
|
||
|
||
Yields: Token A left-child of a token of the span.
|
||
"""
|
||
def __get__(self):
|
||
for token in reversed(self): # Reverse, so we get the tokens in order
|
||
for left in token.lefts:
|
||
if left.i < self.start:
|
||
yield left
|
||
|
||
property rights:
|
||
"""
|
||
Tokens that are to the right of the Span, whose head is within the Span.
|
||
|
||
Yields: Token A right-child of a token of the span.
|
||
"""
|
||
def __get__(self):
|
||
for token in self:
|
||
for right in token.rights:
|
||
if right.i >= self.end:
|
||
yield right
|
||
|
||
property subtree:
|
||
"""
|
||
Tokens that descend from tokens in the span, but fall outside it.
|
||
|
||
Yields: Token A descendant of a token within the span.
|
||
"""
|
||
def __get__(self):
|
||
for word in self.lefts:
|
||
yield from word.subtree
|
||
yield from self
|
||
for word in self.rights:
|
||
yield from word.subtree
|
||
|
||
property ent_id:
|
||
"""
|
||
An (integer) entity ID. Usually assigned by patterns in the Matcher.
|
||
"""
|
||
def __get__(self):
|
||
return self.root.ent_id
|
||
|
||
def __set__(self, hash_t key):
|
||
# TODO
|
||
raise NotImplementedError(
|
||
"Can't yet set ent_id from Span. Vote for this feature on the issue "
|
||
"tracker: http://github.com/explosion/spaCy/issues")
|
||
property ent_id_:
|
||
"""
|
||
A (string) entity ID. Usually assigned by patterns in the Matcher.
|
||
"""
|
||
def __get__(self):
|
||
return self.root.ent_id_
|
||
|
||
def __set__(self, hash_t key):
|
||
# TODO
|
||
raise NotImplementedError(
|
||
"Can't yet set ent_id_ from Span. Vote for this feature on the issue "
|
||
"tracker: http://github.com/explosion/spaCy/issues")
|
||
|
||
property orth_:
|
||
def __get__(self):
|
||
return ''.join([t.string for t in self]).strip()
|
||
|
||
property lemma_:
|
||
def __get__(self):
|
||
return ' '.join([t.lemma_ for t in self]).strip()
|
||
|
||
property upper_:
|
||
def __get__(self):
|
||
return ''.join([t.string.upper() for t in self]).strip()
|
||
|
||
property lower_:
|
||
def __get__(self):
|
||
return ''.join([t.string.lower() for t in self]).strip()
|
||
|
||
property string:
|
||
def __get__(self):
|
||
return ''.join([t.string for t in self])
|
||
|
||
property label_:
|
||
def __get__(self):
|
||
return self.doc.vocab.strings[self.label]
|
||
|
||
|
||
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
|
||
# Don't allow spaces to be the root, if there are
|
||
# better candidates
|
||
if Lexeme.c_check_flag(token.lex, IS_SPACE) and token.l_kids == 0 and token.r_kids == 0:
|
||
return sent_length-1
|
||
if Lexeme.c_check_flag(token.lex, IS_PUNCT) and token.l_kids == 0 and token.r_kids == 0:
|
||
return sent_length-1
|
||
cdef int n = 0
|
||
while token.head != 0:
|
||
token += token.head
|
||
n += 1
|
||
if n >= sent_length:
|
||
raise RuntimeError(
|
||
"Array bounds exceeded while searching for root word. This likely "
|
||
"means the parse tree is in an invalid state. Please report this "
|
||
"issue here: http://github.com/explosion/spaCy/issues")
|
||
return n
|