mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* keep trf tok2vec and wordpiecer components during update * also support transformer models for other example scripts
		
			
				
	
	
		
			112 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf8
 | 
						|
"""Example of training spaCy dependency parser, starting off with an existing
 | 
						|
model or a blank model. For more details, see the documentation:
 | 
						|
* Training: https://spacy.io/usage/training
 | 
						|
* Dependency Parse: https://spacy.io/usage/linguistic-features#dependency-parse
 | 
						|
 | 
						|
Compatible with: spaCy v2.0.0+
 | 
						|
Last tested with: v2.1.0
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import random
 | 
						|
from pathlib import Path
 | 
						|
import spacy
 | 
						|
from spacy.util import minibatch, compounding
 | 
						|
 | 
						|
 | 
						|
# training data
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        "They trade mortgage-backed securities.",
 | 
						|
        {
 | 
						|
            "heads": [1, 1, 4, 4, 5, 1, 1],
 | 
						|
            "deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
 | 
						|
        },
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        "I like London and Berlin.",
 | 
						|
        {
 | 
						|
            "heads": [1, 1, 1, 2, 2, 1],
 | 
						|
            "deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
 | 
						|
        },
 | 
						|
    ),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | 
						|
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						|
    n_iter=("Number of training iterations", "option", "n", int),
 | 
						|
)
 | 
						|
def main(model=None, output_dir=None, n_iter=15):
 | 
						|
    """Load the model, set up the pipeline and train the parser."""
 | 
						|
    if model is not None:
 | 
						|
        nlp = spacy.load(model)  # load existing spaCy model
 | 
						|
        print("Loaded model '%s'" % model)
 | 
						|
    else:
 | 
						|
        nlp = spacy.blank("en")  # create blank Language class
 | 
						|
        print("Created blank 'en' model")
 | 
						|
 | 
						|
    # add the parser to the pipeline if it doesn't exist
 | 
						|
    # nlp.create_pipe works for built-ins that are registered with spaCy
 | 
						|
    if "parser" not in nlp.pipe_names:
 | 
						|
        parser = nlp.create_pipe("parser")
 | 
						|
        nlp.add_pipe(parser, first=True)
 | 
						|
    # otherwise, get it, so we can add labels to it
 | 
						|
    else:
 | 
						|
        parser = nlp.get_pipe("parser")
 | 
						|
 | 
						|
    # add labels to the parser
 | 
						|
    for _, annotations in TRAIN_DATA:
 | 
						|
        for dep in annotations.get("deps", []):
 | 
						|
            parser.add_label(dep)
 | 
						|
 | 
						|
    # get names of other pipes to disable them during training
 | 
						|
    pipe_exceptions = ["parser", "trf_wordpiecer", "trf_tok2vec"]
 | 
						|
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
 | 
						|
    with nlp.disable_pipes(*other_pipes):  # only train parser
 | 
						|
        optimizer = nlp.begin_training()
 | 
						|
        for itn in range(n_iter):
 | 
						|
            random.shuffle(TRAIN_DATA)
 | 
						|
            losses = {}
 | 
						|
            # batch up the examples using spaCy's minibatch
 | 
						|
            batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
 | 
						|
            for batch in batches:
 | 
						|
                texts, annotations = zip(*batch)
 | 
						|
                nlp.update(texts, annotations, sgd=optimizer, losses=losses)
 | 
						|
            print("Losses", losses)
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like securities."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc])
 | 
						|
 | 
						|
    # save model to output directory
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
        nlp.to_disk(output_dir)
 | 
						|
        print("Saved model to", output_dir)
 | 
						|
 | 
						|
        # test the saved model
 | 
						|
        print("Loading from", output_dir)
 | 
						|
        nlp2 = spacy.load(output_dir)
 | 
						|
        doc = nlp2(test_text)
 | 
						|
        print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc])
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 | 
						|
 | 
						|
    # expected result:
 | 
						|
    # [
 | 
						|
    #   ('I', 'nsubj', 'like'),
 | 
						|
    #   ('like', 'ROOT', 'like'),
 | 
						|
    #   ('securities', 'dobj', 'like'),
 | 
						|
    #   ('.', 'punct', 'like')
 | 
						|
    # ]
 |