mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 21:57:15 +03:00
230 lines
5.7 KiB
Python
230 lines
5.7 KiB
Python
import pytest
|
|
from spacy.lang.en import English
|
|
import numpy as np
|
|
import spacy
|
|
from spacy.tokens import Doc
|
|
from spacy.matcher import PhraseMatcher
|
|
from spacy.tokens import DocBin
|
|
from spacy.util import load_config_from_str
|
|
from spacy.training import Example
|
|
from spacy.training.initialize import init_nlp
|
|
import pickle
|
|
|
|
from ..util import make_tempdir
|
|
|
|
|
|
def test_issue6730(en_vocab):
|
|
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
|
|
from spacy.kb import KnowledgeBase
|
|
|
|
kb = KnowledgeBase(en_vocab, entity_vector_length=3)
|
|
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
|
|
|
|
with pytest.raises(ValueError):
|
|
kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
|
|
assert kb.contains_alias("") is False
|
|
|
|
kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
|
|
kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
|
|
|
|
with make_tempdir() as tmp_dir:
|
|
kb.to_disk(tmp_dir)
|
|
kb.from_disk(tmp_dir)
|
|
assert kb.get_size_aliases() == 2
|
|
assert set(kb.get_alias_strings()) == {"x", "y"}
|
|
|
|
|
|
def test_issue6755(en_tokenizer):
|
|
doc = en_tokenizer("This is a magnificent sentence.")
|
|
span = doc[:0]
|
|
assert span.text_with_ws == ""
|
|
assert span.text == ""
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,label",
|
|
[("Welcome to Mumbai, my friend", 11, 17, "GPE")],
|
|
)
|
|
def test_issue6815_1(sentence, start_idx, end_idx, label):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, label=label)
|
|
assert span.label_ == label
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
|
|
)
|
|
def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
|
|
assert span.kb_id == kb_id
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,vector",
|
|
[("Welcome to Mumbai, my friend", 11, 17, np.array([0.1, 0.2, 0.3]))],
|
|
)
|
|
def test_issue6815_3(sentence, start_idx, end_idx, vector):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, vector=vector)
|
|
assert (span.vector == vector).all()
|
|
|
|
|
|
def test_issue6839(en_vocab):
|
|
"""Ensure that PhraseMatcher accepts Span as input"""
|
|
# fmt: off
|
|
words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."]
|
|
# fmt: on
|
|
doc = Doc(en_vocab, words=words)
|
|
span = doc[:8]
|
|
pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
|
|
matcher = PhraseMatcher(en_vocab)
|
|
matcher.add("SPACY", [pattern])
|
|
matches = matcher(span)
|
|
assert matches
|
|
|
|
|
|
CONFIG_ISSUE_6908 = """
|
|
[paths]
|
|
train = "TRAIN_PLACEHOLDER"
|
|
raw = null
|
|
init_tok2vec = null
|
|
vectors = null
|
|
|
|
[system]
|
|
seed = 0
|
|
gpu_allocator = null
|
|
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["textcat"]
|
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
|
disabled = []
|
|
before_creation = null
|
|
after_creation = null
|
|
after_pipeline_creation = null
|
|
batch_size = 1000
|
|
|
|
[components]
|
|
|
|
[components.textcat]
|
|
factory = "TEXTCAT_PLACEHOLDER"
|
|
|
|
[corpora]
|
|
|
|
[corpora.train]
|
|
@readers = "spacy.Corpus.v1"
|
|
path = ${paths:train}
|
|
|
|
[corpora.dev]
|
|
@readers = "spacy.Corpus.v1"
|
|
path = ${paths:train}
|
|
|
|
|
|
[training]
|
|
train_corpus = "corpora.train"
|
|
dev_corpus = "corpora.dev"
|
|
seed = ${system.seed}
|
|
gpu_allocator = ${system.gpu_allocator}
|
|
frozen_components = []
|
|
before_to_disk = null
|
|
|
|
[pretraining]
|
|
|
|
[initialize]
|
|
vectors = ${paths.vectors}
|
|
init_tok2vec = ${paths.init_tok2vec}
|
|
vocab_data = null
|
|
lookups = null
|
|
before_init = null
|
|
after_init = null
|
|
|
|
[initialize.components]
|
|
|
|
[initialize.components.textcat]
|
|
labels = ['label1', 'label2']
|
|
|
|
[initialize.tokenizer]
|
|
"""
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"component_name", ["textcat", "textcat_multilabel"],
|
|
)
|
|
def test_issue6908(component_name):
|
|
"""Test intializing textcat with labels in a list"""
|
|
|
|
def create_data(out_file):
|
|
nlp = spacy.blank("en")
|
|
doc = nlp.make_doc("Some text")
|
|
doc.cats = {"label1": 0, "label2": 1}
|
|
out_data = DocBin(docs=[doc]).to_bytes()
|
|
with out_file.open("wb") as file_:
|
|
file_.write(out_data)
|
|
|
|
with make_tempdir() as tmp_path:
|
|
train_path = tmp_path / "train.spacy"
|
|
create_data(train_path)
|
|
config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
|
|
config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
|
|
config = load_config_from_str(config_str)
|
|
init_nlp(config)
|
|
|
|
|
|
CONFIG_ISSUE_6950 = """
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["tok2vec", "tagger"]
|
|
|
|
[components]
|
|
|
|
[components.tok2vec]
|
|
factory = "tok2vec"
|
|
|
|
[components.tok2vec.model]
|
|
@architectures = "spacy.Tok2Vec.v1"
|
|
|
|
[components.tok2vec.model.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
|
rows = [5000,2500,2500,2500]
|
|
include_static_vectors = false
|
|
|
|
[components.tok2vec.model.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
|
width = 96
|
|
depth = 4
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
|
|
[components.ner]
|
|
factory = "ner"
|
|
|
|
[components.tagger]
|
|
factory = "tagger"
|
|
|
|
[components.tagger.model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
nO = null
|
|
|
|
[components.tagger.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
upstream = "*"
|
|
"""
|
|
|
|
|
|
def test_issue6950():
|
|
"""Test that the nlp object with initialized tok2vec with listeners pickles
|
|
correctly (and doesn't have lambdas).
|
|
"""
|
|
nlp = English.from_config(load_config_from_str(CONFIG_ISSUE_6950))
|
|
nlp.initialize(lambda: [Example.from_dict(nlp.make_doc("hello"), {"tags": ["V"]})])
|
|
pickle.dumps(nlp)
|
|
nlp("hello")
|
|
pickle.dumps(nlp)
|