spaCy/examples/pipeline/wiki_entity_linking/train_el.py
2019-05-15 02:23:08 +02:00

385 lines
16 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import os
import datetime
from os import listdir
from random import shuffle
import numpy as np
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init
from thinc.api import chain, flatten_add_lengths, with_getitem, clone
from thinc.neural.util import get_array_module
from thinc.v2v import Model, Softmax, Maxout, Affine, ReLu
from thinc.t2v import Pooling, sum_pool, mean_pool
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
from spacy.tokens import Doc
""" TODO: this code needs to be implemented in pipes.pyx"""
class EL_Model():
INPUT_DIM = 300
OUTPUT_DIM = 96
PRINT_LOSS = False
PRINT_F = True
EPS = 0.0000000005
labels = ["MATCH", "NOMATCH"]
name = "entity_linker"
def __init__(self, kb, nlp):
run_el._prepare_pipeline(nlp, kb)
self.nlp = nlp
self.kb = kb
self.entity_encoder = self._simple_encoder(in_width=self.INPUT_DIM, out_width=self.OUTPUT_DIM)
self.article_encoder = self._simple_encoder(in_width=self.INPUT_DIM, out_width=self.OUTPUT_DIM)
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
Doc.set_extension("entity_id", default=None)
train_instances, train_pos, train_neg, train_doc = self._get_training_data(training_dir,
entity_descr_output,
False,
trainlimit,
to_print)
dev_instances, dev_pos, dev_neg, dev_doc = self._get_training_data(training_dir,
entity_descr_output,
True,
devlimit,
to_print)
if to_print:
print("Training on", len(train_instances.values()), "articles")
print("Dev test on", len(dev_instances.values()), "articles")
print()
self.sgd_entity = self.begin_training(self.entity_encoder)
self.sgd_article = self.begin_training(self.article_encoder)
self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc)
losses = {}
instance_count = 0
for article_id, inst_cluster_set in train_instances.items():
# print("article", article_id)
article_doc = train_doc[article_id]
pos_ex_list = list()
neg_exs_list = list()
for inst_cluster in inst_cluster_set:
# print("inst_cluster", inst_cluster)
instance_count += 1
pos_ex_list.append(train_pos.get(inst_cluster))
neg_exs_list.append(train_neg.get(inst_cluster, []))
self.update(article_doc, pos_ex_list, neg_exs_list, losses=losses)
p, r, fscore = self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc)
if self.PRINT_F:
print(round(fscore, 1))
if to_print:
print("Trained on", instance_count, "instance clusters")
def _test_dev(self, dev_instances, dev_pos, dev_neg, dev_doc):
predictions = list()
golds = list()
for article_id, inst_cluster_set in dev_instances.items():
for inst_cluster in inst_cluster_set:
pos_ex = dev_pos.get(inst_cluster)
neg_exs = dev_neg.get(inst_cluster, [])
ex_to_id = dict()
if pos_ex and neg_exs:
ex_to_id[pos_ex] = pos_ex._.entity_id
for neg_ex in neg_exs:
ex_to_id[neg_ex] = neg_ex._.entity_id
article = inst_cluster.split(sep="_")[0]
entity_id = inst_cluster.split(sep="_")[1]
article_doc = dev_doc[article]
examples = list(neg_exs)
examples.append(pos_ex)
shuffle(examples)
best_entity, highest_prob = self._predict(examples, article_doc)
predictions.append(ex_to_id[best_entity])
golds.append(ex_to_id[pos_ex])
# TODO: use lowest_mse and combine with prior probability
p, r, F = run_el.evaluate(predictions, golds, to_print=False)
return p, r, F
def _predict(self, entities, article_doc):
doc_encoding = self.article_encoder([article_doc])
highest_prob = None
best_entity = None
entity_to_vector = dict()
for entity in entities:
entity_to_vector[entity] = self.entity_encoder([entity])
for entity in entities:
entity_encoding = entity_to_vector[entity]
prob = self._calculate_probability(doc_encoding, entity_encoding, entity_to_vector.values())
if not best_entity or prob > highest_prob:
highest_prob = prob
best_entity = entity
return best_entity, highest_prob
def _simple_encoder(self, in_width, out_width):
conv_depth = 1
cnn_maxout_pieces = 3
with Model.define_operators({">>": chain, "**": clone}):
# encoder = SpacyVectors \
# >> flatten_add_lengths \
# >> ParametricAttention(in_width)\
# >> Pooling(mean_pool) \
# >> Residual(zero_init(Maxout(in_width, in_width))) \
# >> zero_init(Affine(out_width, in_width, drop_factor=0.0))
encoder = SpacyVectors \
>> flatten_add_lengths \
>> with_getitem(0, Affine(in_width, in_width)) \
>> ParametricAttention(in_width) \
>> Pooling(sum_pool) \
>> Residual(ReLu(in_width, in_width)) ** conv_depth \
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
# >> zero_init(Affine(nr_class, width, drop_factor=0.0))
# >> logistic
# convolution = Residual(
# ExtractWindow(nW=1)
# >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
# )
# embed = SpacyVectors >> LN(Maxout(width, width, pieces=3))
# encoder = SpacyVectors >> flatten_add_lengths >> convolution ** conv_depth
# encoder = with_flatten(embed >> convolution ** conv_depth, pad=conv_depth)
return encoder
def begin_training(self, model):
# TODO ? link_vectors_to_models(self.vocab)
sgd = create_default_optimizer(model.ops)
return sgd
def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None):
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
doc_encoding = doc_encoding[0]
# print("doc", doc_encoding)
for i, true_entity in enumerate(true_entity_list):
try:
false_vectors = list()
false_entities = false_entities_list[i]
if len(false_entities) > 0:
# TODO: batch per doc
for false_entity in false_entities:
# TODO: one call only to begin_update ?
false_entity_encoding, false_entity_bp = self.entity_encoder.begin_update([false_entity], drop=drop)
false_entity_encoding = false_entity_encoding[0]
false_vectors.append(false_entity_encoding)
true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop)
true_entity_encoding = true_entity_encoding[0]
# true_gradient = self._calculate_true_gradient(doc_encoding, true_entity_encoding)
all_vectors = [true_entity_encoding]
all_vectors.extend(false_vectors)
# consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding)
true_prob = self._calculate_probability(doc_encoding, true_entity_encoding, all_vectors)
# print("true", true_prob, true_entity_encoding)
# print("true gradient", true_gradient)
# print()
all_probs = [true_prob]
for false_vector in false_vectors:
false_prob = self._calculate_probability(doc_encoding, false_vector, all_vectors)
# print("false", false_prob, false_vector)
# print("false gradient", false_gradient)
# print()
all_probs.append(false_prob)
loss = self._calculate_loss(true_prob, all_probs).astype(np.float32)
if self.PRINT_LOSS:
print(round(loss, 5))
#doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors)
entity_gradient = self._calculate_entity_gradient(doc_encoding, true_entity_encoding, false_vectors)
# print("entity_gradient", entity_gradient)
# print("doc_gradient", doc_gradient)
# article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article)
true_entity_bp([entity_gradient.astype(np.float32)], sgd=self.sgd_entity)
#true_entity_bp([true_gradient.astype(np.float32)], sgd=self.sgd_entity)
except Exception as e:
pass
# TODO: FIX
def _calculate_consensus(self, vector1, vector2):
if len(vector1) != len(vector2):
raise ValueError("To calculate consensus, both vectors should be of equal length")
avg = (vector2 + vector1) / 2
return avg
def _calculate_probability(self, vector1, vector2, allvectors):
""" Make sure that vector2 is included in allvectors """
if len(vector1) != len(vector2):
raise ValueError("To calculate similarity, both vectors should be of equal length")
vector1_t = vector1.transpose()
e = self._calculate_dot_exp(vector2, vector1_t)
e_sum = 0
for v in allvectors:
e_sum += self._calculate_dot_exp(v, vector1_t)
return float(e / (self.EPS + e_sum))
def _calculate_loss(self, true_prob, all_probs):
""" all_probs should include true_prob ! """
return -1 * np.log((self.EPS + true_prob) / (self.EPS + sum(all_probs)))
@staticmethod
def _calculate_doc_gradient(loss, doc_vector, true_vector, false_vectors):
gradient = np.zeros(len(doc_vector))
for i in range(len(doc_vector)):
min_false = min(x[i] for x in false_vectors)
max_false = max(x[i] for x in false_vectors)
if true_vector[i] > max_false:
if doc_vector[i] > 0:
gradient[i] = 0
else:
gradient[i] = -loss
elif true_vector[i] < min_false:
if doc_vector[i] > 0:
gradient[i] = loss
if doc_vector[i] < 0:
gradient[i] = 0
else:
target = 0 # non-distinctive vector positions should convert to 0
gradient[i] = doc_vector[i] - target
return gradient
def _calculate_true_gradient(self, doc_vector, entity_vector):
# sum_entity_vector = sum(entity_vector)
# gradient = [-sum_entity_vector/(self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))]
gradient = [1 / (self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))]
return np.asarray(gradient)
def _calculate_entity_gradient(self, doc_vector, true_vector, false_vectors):
entity_gradient = list()
prob_true = list()
false_prob_list = list()
for i in range(len(true_vector)):
doc_i = np.asarray([doc_vector[i]])
true_i = np.asarray([true_vector[i]])
falses_i = np.asarray([[fv[i]] for fv in false_vectors])
all_i = [true_i]
all_i.extend(falses_i)
prob_true_i = self._calculate_probability(doc_i, true_i, all_i)
prob_true.append(prob_true_i)
false_list = list()
all_probs_i = [prob_true_i]
for false_vector in falses_i:
false_prob_i = self._calculate_probability(doc_i, false_vector, all_i)
all_probs_i.append(false_prob_i)
false_list.append(false_prob_i)
false_prob_list.append(false_list)
sign_loss_i = 1
if doc_vector[i] * true_vector[i] < 0:
sign_loss_i = -1
loss_i = sign_loss_i * self._calculate_loss(prob_true_i, all_probs_i).astype(np.float32)
entity_gradient.append(loss_i)
# print("prob_true", prob_true)
# print("false_prob_list", false_prob_list)
return np.asarray(entity_gradient)
@staticmethod
def _calculate_dot_exp(vector1, vector2_transposed):
dot_product = vector1.dot(vector2_transposed)
dot_product = min(50, dot_product)
# dot_product = max(-10000, dot_product)
# print("DOT", dot_product)
e = np.exp(dot_product)
# print("E", e)
return e
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)
instance_by_doc = dict()
local_vectors = list() # TODO: local vectors
doc_by_article = dict()
pos_entities = dict()
neg_entities = dict()
cnt = 0
for f in listdir(training_dir):
if not limit or cnt < limit:
if dev == run_el.is_dev(f):
article_id = f.replace(".txt", "")
if cnt % 500 == 0 and to_print:
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
cnt += 1
if article_id not in doc_by_article:
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
text = file.read()
doc = self.nlp(text)
doc_by_article[article_id] = doc
instance_by_doc[article_id] = set()
for mention, entity_pos in correct_entries[article_id].items():
descr = id_to_descr.get(entity_pos)
if descr:
instance_by_doc[article_id].add(article_id + "_" + mention)
doc_descr = self.nlp(descr)
doc_descr._.entity_id = entity_pos
pos_entities[article_id + "_" + mention] = doc_descr
for mention, entity_negs in incorrect_entries[article_id].items():
for entity_neg in entity_negs:
descr = id_to_descr.get(entity_neg)
if descr:
doc_descr = self.nlp(descr)
doc_descr._.entity_id = entity_neg
descr_list = neg_entities.get(article_id + "_" + mention, [])
descr_list.append(doc_descr)
neg_entities[article_id + "_" + mention] = descr_list
if to_print:
print()
print("Processed", cnt, "training articles, dev=" + str(dev))
print()
return instance_by_doc, pos_entities, neg_entities, doc_by_article