mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
109 lines
3.5 KiB
Python
109 lines
3.5 KiB
Python
import pytest
|
|
from thinc.api import Adam, fix_random_seed
|
|
from spacy import registry
|
|
from spacy.attrs import NORM
|
|
from spacy.vocab import Vocab
|
|
from spacy.gold import Example
|
|
from spacy.tokens import Doc
|
|
from spacy.pipeline import DependencyParser, EntityRecognizer
|
|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
|
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
|
|
|
|
|
@pytest.fixture
|
|
def vocab():
|
|
return Vocab(lex_attr_getters={NORM: lambda s: s})
|
|
|
|
|
|
@pytest.fixture
|
|
def parser(vocab):
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
|
|
parser = DependencyParser(vocab, model, **config)
|
|
return parser
|
|
|
|
|
|
def test_init_parser(parser):
|
|
pass
|
|
|
|
|
|
def _train_parser(parser):
|
|
fix_random_seed(1)
|
|
parser.add_label("left")
|
|
parser.begin_training([], **parser.cfg)
|
|
sgd = Adam(0.001)
|
|
|
|
for i in range(5):
|
|
losses = {}
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
|
gold = {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
|
|
example = Example.from_dict(doc, gold)
|
|
parser.update([example], sgd=sgd, losses=losses)
|
|
return parser
|
|
|
|
|
|
def test_add_label(parser):
|
|
parser = _train_parser(parser)
|
|
parser.add_label("right")
|
|
sgd = Adam(0.001)
|
|
for i in range(100):
|
|
losses = {}
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
|
gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
|
|
example = Example.from_dict(doc, gold)
|
|
parser.update([example], sgd=sgd, losses=losses)
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
|
doc = parser(doc)
|
|
assert doc[0].dep_ == "right"
|
|
assert doc[2].dep_ == "left"
|
|
|
|
|
|
def test_add_label_deserializes_correctly():
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
model = registry.make_from_config({"model": DEFAULT_NER_MODEL}, validate=True)["model"]
|
|
ner1 = EntityRecognizer(Vocab(), model, **config)
|
|
ner1.add_label("C")
|
|
ner1.add_label("B")
|
|
ner1.add_label("A")
|
|
ner1.begin_training([])
|
|
ner2 = EntityRecognizer(Vocab(), model, **config)
|
|
|
|
# the second model needs to be resized before we can call from_bytes
|
|
ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves)
|
|
ner2.from_bytes(ner1.to_bytes())
|
|
assert ner1.moves.n_moves == ner2.moves.n_moves
|
|
for i in range(ner1.moves.n_moves):
|
|
assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pipe_cls,n_moves,model_config",
|
|
[(DependencyParser, 5, DEFAULT_PARSER_MODEL), (EntityRecognizer, 4, DEFAULT_NER_MODEL)],
|
|
)
|
|
def test_add_label_get_label(pipe_cls, n_moves, model_config):
|
|
"""Test that added labels are returned correctly. This test was added to
|
|
test for a bug in DependencyParser.labels that'd cause it to fail when
|
|
splitting the move names.
|
|
"""
|
|
labels = ["A", "B", "C"]
|
|
model = registry.make_from_config({"model": model_config}, validate=True)["model"]
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
pipe = pipe_cls(Vocab(), model, **config)
|
|
for label in labels:
|
|
pipe.add_label(label)
|
|
assert len(pipe.move_names) == len(labels) * n_moves
|
|
pipe_labels = sorted(list(pipe.labels))
|
|
assert pipe_labels == labels
|