mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Support registered vectors * Format * Auto-fill [nlp] on load from config and from bytes/disk * Only auto-fill [nlp] * Undo all changes to Language.from_disk * Expand BaseVectors These methods are needed in various places for training and vector similarity. * isort * More linting * Only fill [nlp.vectors] * Update spacy/vocab.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Revert changes to test related to auto-filling [nlp] * Add vectors registry * Rephrase error about vocab methods for vectors * Switch to dummy implementation for BaseVectors.to_ops * Add initial draft of docs * Remove example from BaseVectors docs * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update website/docs/api/basevectors.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix type and lint bpemb example * Update website/docs/api/basevectors.mdx --------- Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import warnings
 | 
						|
from typing import Callable, List, Optional, Sequence, Tuple, cast
 | 
						|
 | 
						|
from thinc.api import Model, Ops, registry
 | 
						|
from thinc.initializers import glorot_uniform_init
 | 
						|
from thinc.types import Floats1d, Floats2d, Ints1d, Ragged
 | 
						|
from thinc.util import partial
 | 
						|
 | 
						|
from ..attrs import ORTH
 | 
						|
from ..errors import Errors, Warnings
 | 
						|
from ..tokens import Doc
 | 
						|
from ..vectors import Mode, Vectors
 | 
						|
from ..vocab import Vocab
 | 
						|
 | 
						|
 | 
						|
@registry.layers("spacy.StaticVectors.v2")
 | 
						|
def StaticVectors(
 | 
						|
    nO: Optional[int] = None,
 | 
						|
    nM: Optional[int] = None,
 | 
						|
    *,
 | 
						|
    dropout: Optional[float] = None,
 | 
						|
    init_W: Callable = glorot_uniform_init,
 | 
						|
    key_attr: str = "ORTH"
 | 
						|
) -> Model[List[Doc], Ragged]:
 | 
						|
    """Embed Doc objects with their vocab's vectors table, applying a learned
 | 
						|
    linear projection to control the dimensionality. If a dropout rate is
 | 
						|
    specified, the dropout is applied per dimension over the whole batch.
 | 
						|
    """
 | 
						|
    if key_attr != "ORTH":
 | 
						|
        warnings.warn(Warnings.W125, DeprecationWarning)
 | 
						|
    return Model(
 | 
						|
        "static_vectors",
 | 
						|
        forward,
 | 
						|
        init=partial(init, init_W),
 | 
						|
        params={"W": None},
 | 
						|
        attrs={"key_attr": key_attr, "dropout_rate": dropout},
 | 
						|
        dims={"nO": nO, "nM": nM},
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def forward(
 | 
						|
    model: Model[List[Doc], Ragged], docs: List[Doc], is_train: bool
 | 
						|
) -> Tuple[Ragged, Callable]:
 | 
						|
    token_count = sum(len(doc) for doc in docs)
 | 
						|
    if not token_count:
 | 
						|
        return _handle_empty(model.ops, model.get_dim("nO"))
 | 
						|
    vocab: Vocab = docs[0].vocab
 | 
						|
    key_attr: int = getattr(vocab.vectors, "attr", ORTH)
 | 
						|
    keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
 | 
						|
    W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
 | 
						|
    if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
 | 
						|
        V = model.ops.asarray(vocab.vectors.data)
 | 
						|
        rows = vocab.vectors.find(keys=keys)
 | 
						|
        V = model.ops.as_contig(V[rows])
 | 
						|
    elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret:
 | 
						|
        V = vocab.vectors.get_batch(keys)
 | 
						|
        V = model.ops.as_contig(V)
 | 
						|
    elif hasattr(vocab.vectors, "get_batch"):
 | 
						|
        V = vocab.vectors.get_batch(keys)
 | 
						|
        V = model.ops.as_contig(V)
 | 
						|
    else:
 | 
						|
        raise RuntimeError(Errors.E896)
 | 
						|
    try:
 | 
						|
        vectors_data = model.ops.gemm(V, W, trans2=True)
 | 
						|
    except ValueError:
 | 
						|
        raise RuntimeError(Errors.E896)
 | 
						|
    if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
 | 
						|
        # Convert negative indices to 0-vectors
 | 
						|
        # TODO: more options for UNK tokens
 | 
						|
        vectors_data[rows < 0] = 0
 | 
						|
    output = Ragged(vectors_data, model.ops.asarray1i([len(doc) for doc in docs]))
 | 
						|
    mask = None
 | 
						|
    if is_train:
 | 
						|
        mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate"))
 | 
						|
        if mask is not None:
 | 
						|
            output.data *= mask
 | 
						|
 | 
						|
    def backprop(d_output: Ragged) -> List[Doc]:
 | 
						|
        if mask is not None:
 | 
						|
            d_output.data *= mask
 | 
						|
        model.inc_grad(
 | 
						|
            "W",
 | 
						|
            model.ops.gemm(
 | 
						|
                cast(Floats2d, d_output.data),
 | 
						|
                cast(Floats2d, model.ops.as_contig(V)),
 | 
						|
                trans1=True,
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        return []
 | 
						|
 | 
						|
    return output, backprop
 | 
						|
 | 
						|
 | 
						|
def init(
 | 
						|
    init_W: Callable,
 | 
						|
    model: Model[List[Doc], Ragged],
 | 
						|
    X: Optional[List[Doc]] = None,
 | 
						|
    Y: Optional[Ragged] = None,
 | 
						|
) -> Model[List[Doc], Ragged]:
 | 
						|
    nM = model.get_dim("nM") if model.has_dim("nM") else None
 | 
						|
    nO = model.get_dim("nO") if model.has_dim("nO") else None
 | 
						|
    if X is not None and len(X):
 | 
						|
        nM = X[0].vocab.vectors.shape[1]
 | 
						|
    if Y is not None:
 | 
						|
        nO = Y.data.shape[1]
 | 
						|
 | 
						|
    if nM is None:
 | 
						|
        raise ValueError(Errors.E905)
 | 
						|
    if nO is None:
 | 
						|
        raise ValueError(Errors.E904)
 | 
						|
    model.set_dim("nM", nM)
 | 
						|
    model.set_dim("nO", nO)
 | 
						|
    model.set_param("W", init_W(model.ops, (nO, nM)))
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def _handle_empty(ops: Ops, nO: int):
 | 
						|
    return Ragged(ops.alloc2f(0, nO), ops.alloc1i(0)), lambda d_ragged: []
 | 
						|
 | 
						|
 | 
						|
def _get_drop_mask(ops: Ops, nO: int, rate: Optional[float]) -> Optional[Floats1d]:
 | 
						|
    if rate is not None:
 | 
						|
        mask = ops.get_dropout_mask((nO,), rate)
 | 
						|
        return mask  # type: ignore
 | 
						|
    return None
 |