mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Pass excludes when serializing vocab Additional minor bug fix: * Deserialize vocab in `EntityLinker.from_disk` * Add test for excluding strings on load * Fix formatting
		
			
				
	
	
		
			841 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			841 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: embedsignature=True, profile=True, binding=True
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from cython.operator cimport dereference as deref
 | 
						|
from cython.operator cimport preincrement as preinc
 | 
						|
from libc.string cimport memcpy, memset
 | 
						|
from libcpp.set cimport set as stdset
 | 
						|
from cymem.cymem cimport Pool
 | 
						|
from preshed.maps cimport PreshMap
 | 
						|
cimport cython
 | 
						|
 | 
						|
import re
 | 
						|
import warnings
 | 
						|
 | 
						|
from .tokens.doc cimport Doc
 | 
						|
from .strings cimport hash_string
 | 
						|
from .lexeme cimport EMPTY_LEXEME
 | 
						|
 | 
						|
from .attrs import intify_attrs
 | 
						|
from .symbols import ORTH, NORM
 | 
						|
from .errors import Errors, Warnings
 | 
						|
from . import util
 | 
						|
from .util import registry, get_words_and_spaces
 | 
						|
from .attrs import intify_attrs
 | 
						|
from .symbols import ORTH
 | 
						|
from .scorer import Scorer
 | 
						|
from .training import validate_examples
 | 
						|
from .tokens import Span
 | 
						|
 | 
						|
 | 
						|
cdef class Tokenizer:
 | 
						|
    """Segment text, and create Doc objects with the discovered segment
 | 
						|
    boundaries.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/tokenizer
 | 
						|
    """
 | 
						|
    def __init__(self, Vocab vocab, rules=None, prefix_search=None,
 | 
						|
                 suffix_search=None, infix_finditer=None, token_match=None,
 | 
						|
                 url_match=None):
 | 
						|
        """Create a `Tokenizer`, to create `Doc` objects given unicode text.
 | 
						|
 | 
						|
        vocab (Vocab): A storage container for lexical types.
 | 
						|
        rules (dict): Exceptions and special-cases for the tokenizer.
 | 
						|
        prefix_search (callable): A function matching the signature of
 | 
						|
            `re.compile(string).search` to match prefixes.
 | 
						|
        suffix_search (callable): A function matching the signature of
 | 
						|
            `re.compile(string).search` to match suffixes.
 | 
						|
        `infix_finditer` (callable): A function matching the signature of
 | 
						|
            `re.compile(string).finditer` to find infixes.
 | 
						|
        token_match (callable): A boolean function matching strings to be
 | 
						|
            recognized as tokens.
 | 
						|
        url_match (callable): A boolean function matching strings to be
 | 
						|
            recognized as tokens after considering prefixes and suffixes.
 | 
						|
 | 
						|
        EXAMPLE:
 | 
						|
            >>> tokenizer = Tokenizer(nlp.vocab)
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#init
 | 
						|
        """
 | 
						|
        self.mem = Pool()
 | 
						|
        self._cache = PreshMap()
 | 
						|
        self._specials = PreshMap()
 | 
						|
        self.token_match = token_match
 | 
						|
        self.url_match = url_match
 | 
						|
        self.prefix_search = prefix_search
 | 
						|
        self.suffix_search = suffix_search
 | 
						|
        self.infix_finditer = infix_finditer
 | 
						|
        self.vocab = vocab
 | 
						|
        self._rules = {}
 | 
						|
        self._special_matcher = PhraseMatcher(self.vocab)
 | 
						|
        self._load_special_cases(rules)
 | 
						|
 | 
						|
    property token_match:
 | 
						|
        def __get__(self):
 | 
						|
            return self._token_match
 | 
						|
 | 
						|
        def __set__(self, token_match):
 | 
						|
            self._token_match = token_match
 | 
						|
            self._reload_special_cases()
 | 
						|
 | 
						|
    property url_match:
 | 
						|
        def __get__(self):
 | 
						|
            return self._url_match
 | 
						|
 | 
						|
        def __set__(self, url_match):
 | 
						|
            self._url_match = url_match
 | 
						|
            self._reload_special_cases()
 | 
						|
 | 
						|
    property prefix_search:
 | 
						|
        def __get__(self):
 | 
						|
            return self._prefix_search
 | 
						|
 | 
						|
        def __set__(self, prefix_search):
 | 
						|
            self._prefix_search = prefix_search
 | 
						|
            self._reload_special_cases()
 | 
						|
 | 
						|
    property suffix_search:
 | 
						|
        def __get__(self):
 | 
						|
            return self._suffix_search
 | 
						|
 | 
						|
        def __set__(self, suffix_search):
 | 
						|
            self._suffix_search = suffix_search
 | 
						|
            self._reload_special_cases()
 | 
						|
 | 
						|
    property infix_finditer:
 | 
						|
        def __get__(self):
 | 
						|
            return self._infix_finditer
 | 
						|
 | 
						|
        def __set__(self, infix_finditer):
 | 
						|
            self._infix_finditer = infix_finditer
 | 
						|
            self._reload_special_cases()
 | 
						|
 | 
						|
    property rules:
 | 
						|
        def __get__(self):
 | 
						|
            return self._rules
 | 
						|
 | 
						|
        def __set__(self, rules):
 | 
						|
            self._rules = {}
 | 
						|
            self._flush_cache()
 | 
						|
            self._flush_specials()
 | 
						|
            self._cache = PreshMap()
 | 
						|
            self._specials = PreshMap()
 | 
						|
            self._load_special_cases(rules)
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        args = (self.vocab,
 | 
						|
                self.rules,
 | 
						|
                self.prefix_search,
 | 
						|
                self.suffix_search,
 | 
						|
                self.infix_finditer,
 | 
						|
                self.token_match,
 | 
						|
                self.url_match)
 | 
						|
        return (self.__class__, args, None, None)
 | 
						|
 | 
						|
    def __call__(self, unicode string):
 | 
						|
        """Tokenize a string.
 | 
						|
 | 
						|
        string (str): The string to tokenize.
 | 
						|
        RETURNS (Doc): A container for linguistic annotations.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#call
 | 
						|
        """
 | 
						|
        doc = self._tokenize_affixes(string, True)
 | 
						|
        self._apply_special_cases(doc)
 | 
						|
        return doc
 | 
						|
 | 
						|
    @cython.boundscheck(False)
 | 
						|
    cdef Doc _tokenize_affixes(self, unicode string, bint with_special_cases):
 | 
						|
        """Tokenize according to affix and token_match settings.
 | 
						|
 | 
						|
        string (str): The string to tokenize.
 | 
						|
        RETURNS (Doc): A container for linguistic annotations.
 | 
						|
        """
 | 
						|
        if len(string) >= (2 ** 30):
 | 
						|
            raise ValueError(Errors.E025.format(length=len(string)))
 | 
						|
        cdef int length = len(string)
 | 
						|
        cdef Doc doc = Doc(self.vocab)
 | 
						|
        if length == 0:
 | 
						|
            return doc
 | 
						|
        cdef int i = 0
 | 
						|
        cdef int start = 0
 | 
						|
        cdef int has_special = 0
 | 
						|
        cdef bint in_ws = string[0].isspace()
 | 
						|
        cdef unicode span
 | 
						|
        # The task here is much like string.split, but not quite
 | 
						|
        # We find spans of whitespace and non-space characters, and ignore
 | 
						|
        # spans that are exactly ' '. So, our sequences will all be separated
 | 
						|
        # by either ' ' or nothing.
 | 
						|
        for uc in string:
 | 
						|
            if uc.isspace() != in_ws:
 | 
						|
                if start < i:
 | 
						|
                    # When we want to make this fast, get the data buffer once
 | 
						|
                    # with PyUnicode_AS_DATA, and then maintain a start_byte
 | 
						|
                    # and end_byte, so we can call hash64 directly. That way
 | 
						|
                    # we don't have to create the slice when we hit the cache.
 | 
						|
                    span = string[start:i]
 | 
						|
                    key = hash_string(span)
 | 
						|
                    if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
 | 
						|
                        self._tokenize(doc, span, key, &has_special, with_special_cases)
 | 
						|
                if uc == ' ':
 | 
						|
                    doc.c[doc.length - 1].spacy = True
 | 
						|
                    start = i + 1
 | 
						|
                else:
 | 
						|
                    start = i
 | 
						|
                in_ws = not in_ws
 | 
						|
            i += 1
 | 
						|
        if start < i:
 | 
						|
            span = string[start:]
 | 
						|
            key = hash_string(span)
 | 
						|
            if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
 | 
						|
                self._tokenize(doc, span, key, &has_special, with_special_cases)
 | 
						|
            doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws
 | 
						|
        return doc
 | 
						|
 | 
						|
    def pipe(self, texts, batch_size=1000):
 | 
						|
        """Tokenize a stream of texts.
 | 
						|
 | 
						|
        texts: A sequence of unicode texts.
 | 
						|
        batch_size (int): Number of texts to accumulate in an internal buffer.
 | 
						|
        Defaults to 1000.
 | 
						|
        YIELDS (Doc): A sequence of Doc objects, in order.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#pipe
 | 
						|
        """
 | 
						|
        for text in texts:
 | 
						|
            yield self(text)
 | 
						|
 | 
						|
    def _flush_cache(self):
 | 
						|
        self._reset_cache([key for key in self._cache])
 | 
						|
 | 
						|
    def _reset_cache(self, keys):
 | 
						|
        for k in keys:
 | 
						|
            cached = <_Cached*>self._cache.get(k)
 | 
						|
            del self._cache[k]
 | 
						|
            if cached is not NULL:
 | 
						|
                self.mem.free(cached)
 | 
						|
 | 
						|
    def _flush_specials(self):
 | 
						|
        self._special_matcher = PhraseMatcher(self.vocab)
 | 
						|
        for k in self._specials:
 | 
						|
            cached = <_Cached*>self._specials.get(k)
 | 
						|
            del self._specials[k]
 | 
						|
            if cached is not NULL:
 | 
						|
                self.mem.free(cached)
 | 
						|
 | 
						|
    cdef int _apply_special_cases(self, Doc doc) except -1:
 | 
						|
        """Retokenize doc according to special cases.
 | 
						|
 | 
						|
        doc (Doc): Document.
 | 
						|
        """
 | 
						|
        cdef int i
 | 
						|
        cdef int max_length = 0
 | 
						|
        cdef bint modify_in_place
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef vector[SpanC] c_matches
 | 
						|
        cdef vector[SpanC] c_filtered
 | 
						|
        cdef int offset
 | 
						|
        cdef int modified_doc_length
 | 
						|
        # Find matches for special cases
 | 
						|
        self._special_matcher.find_matches(doc, 0, doc.length, &c_matches)
 | 
						|
        # Skip processing if no matches
 | 
						|
        if c_matches.size() == 0:
 | 
						|
            return True
 | 
						|
        self._filter_special_spans(c_matches, c_filtered, doc.length)
 | 
						|
        # Put span info in span.start-indexed dict and calculate maximum
 | 
						|
        # intermediate document size
 | 
						|
        (span_data, max_length, modify_in_place) = self._prepare_special_spans(doc, c_filtered)
 | 
						|
        # If modifications never increase doc length, can modify in place
 | 
						|
        if modify_in_place:
 | 
						|
            tokens = doc.c
 | 
						|
        # Otherwise create a separate array to store modified tokens
 | 
						|
        else:
 | 
						|
            assert max_length > 0
 | 
						|
            tokens = <TokenC*>mem.alloc(max_length, sizeof(TokenC))
 | 
						|
        # Modify tokenization according to filtered special cases
 | 
						|
        offset = self._retokenize_special_spans(doc, tokens, span_data)
 | 
						|
        # Allocate more memory for doc if needed
 | 
						|
        modified_doc_length = doc.length + offset
 | 
						|
        while modified_doc_length >= doc.max_length:
 | 
						|
            doc._realloc(doc.max_length * 2)
 | 
						|
        # If not modified in place, copy tokens back to doc
 | 
						|
        if not modify_in_place:
 | 
						|
            memcpy(doc.c, tokens, max_length * sizeof(TokenC))
 | 
						|
        for i in range(doc.length + offset, doc.length):
 | 
						|
            memset(&doc.c[i], 0, sizeof(TokenC))
 | 
						|
            doc.c[i].lex = &EMPTY_LEXEME
 | 
						|
        doc.length = doc.length + offset
 | 
						|
        return True
 | 
						|
 | 
						|
    cdef void _filter_special_spans(self, vector[SpanC] &original, vector[SpanC] &filtered, int doc_len) nogil:
 | 
						|
 | 
						|
        cdef int seen_i
 | 
						|
        cdef SpanC span
 | 
						|
        cdef stdset[int] seen_tokens
 | 
						|
        stdsort(original.begin(), original.end(), len_start_cmp)
 | 
						|
        cdef int orig_i = original.size() - 1
 | 
						|
        while orig_i >= 0:
 | 
						|
            span = original[orig_i]
 | 
						|
            if not seen_tokens.count(span.start) and not seen_tokens.count(span.end - 1):
 | 
						|
                filtered.push_back(span)
 | 
						|
            for seen_i in range(span.start, span.end):
 | 
						|
                seen_tokens.insert(seen_i)
 | 
						|
            orig_i -= 1
 | 
						|
        stdsort(filtered.begin(), filtered.end(), start_cmp)
 | 
						|
 | 
						|
    cdef object _prepare_special_spans(self, Doc doc, vector[SpanC] &filtered):
 | 
						|
        spans = [doc[match.start:match.end] for match in filtered]
 | 
						|
        cdef bint modify_in_place = True
 | 
						|
        cdef int curr_length = doc.length
 | 
						|
        cdef int max_length
 | 
						|
        cdef int span_length_diff = 0
 | 
						|
        span_data = {}
 | 
						|
        for span in spans:
 | 
						|
            rule = self._rules.get(span.text, None)
 | 
						|
            span_length_diff = 0
 | 
						|
            if rule:
 | 
						|
                span_length_diff = len(rule) - (span.end - span.start)
 | 
						|
            if span_length_diff > 0:
 | 
						|
                modify_in_place = False
 | 
						|
            curr_length += span_length_diff
 | 
						|
            if curr_length > max_length:
 | 
						|
                max_length = curr_length
 | 
						|
            span_data[span.start] = (span.text, span.start, span.end, span_length_diff)
 | 
						|
        return (span_data, max_length, modify_in_place)
 | 
						|
 | 
						|
    cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens, object span_data):
 | 
						|
        cdef int i = 0
 | 
						|
        cdef int j = 0
 | 
						|
        cdef int offset = 0
 | 
						|
        cdef _Cached* cached
 | 
						|
        cdef int idx_offset = 0
 | 
						|
        cdef int orig_final_spacy
 | 
						|
        cdef int orig_idx
 | 
						|
        cdef int span_start
 | 
						|
        cdef int span_end
 | 
						|
        while i < doc.length:
 | 
						|
            if not i in span_data:
 | 
						|
                tokens[i + offset] = doc.c[i]
 | 
						|
                i += 1
 | 
						|
            else:
 | 
						|
                span = span_data[i]
 | 
						|
                span_start = span[1]
 | 
						|
                span_end = span[2]
 | 
						|
                cached = <_Cached*>self._specials.get(hash_string(span[0]))
 | 
						|
                if cached == NULL:
 | 
						|
                    # Copy original tokens if no rule found
 | 
						|
                    for j in range(span_end - span_start):
 | 
						|
                        tokens[i + offset + j] = doc.c[i + j]
 | 
						|
                    i += span_end - span_start
 | 
						|
                else:
 | 
						|
                    # Copy special case tokens into doc and adjust token and
 | 
						|
                    # character offsets
 | 
						|
                    idx_offset = 0
 | 
						|
                    orig_final_spacy = doc.c[span_end - 1].spacy
 | 
						|
                    orig_idx = doc.c[i].idx
 | 
						|
                    for j in range(cached.length):
 | 
						|
                        tokens[i + offset + j] = cached.data.tokens[j]
 | 
						|
                        tokens[i + offset + j].idx = orig_idx + idx_offset
 | 
						|
                        idx_offset += cached.data.tokens[j].lex.length
 | 
						|
                        if cached.data.tokens[j].spacy:
 | 
						|
                            idx_offset += 1
 | 
						|
                    tokens[i + offset + cached.length - 1].spacy = orig_final_spacy
 | 
						|
                    i += span_end - span_start
 | 
						|
                    offset += span[3]
 | 
						|
        return offset
 | 
						|
 | 
						|
    cdef int _try_specials_and_cache(self, hash_t key, Doc tokens, int* has_special, bint with_special_cases) except -1:
 | 
						|
        cdef bint specials_hit = 0
 | 
						|
        cdef bint cache_hit = 0
 | 
						|
        cdef int i
 | 
						|
        if with_special_cases:
 | 
						|
            cached = <_Cached*>self._specials.get(key)
 | 
						|
            if cached == NULL:
 | 
						|
                specials_hit = False
 | 
						|
            else:
 | 
						|
                for i in range(cached.length):
 | 
						|
                    tokens.push_back(&cached.data.tokens[i], False)
 | 
						|
                has_special[0] = 1
 | 
						|
                specials_hit = True
 | 
						|
        if not specials_hit:
 | 
						|
            cached = <_Cached*>self._cache.get(key)
 | 
						|
            if cached == NULL:
 | 
						|
                cache_hit = False
 | 
						|
            else:
 | 
						|
                if cached.is_lex:
 | 
						|
                    for i in range(cached.length):
 | 
						|
                        tokens.push_back(cached.data.lexemes[i], False)
 | 
						|
                else:
 | 
						|
                    for i in range(cached.length):
 | 
						|
                        tokens.push_back(&cached.data.tokens[i], False)
 | 
						|
                cache_hit = True
 | 
						|
        if not specials_hit and not cache_hit:
 | 
						|
            return False
 | 
						|
        return True
 | 
						|
 | 
						|
    cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key, int* has_special, bint with_special_cases) except -1:
 | 
						|
        cdef vector[LexemeC*] prefixes
 | 
						|
        cdef vector[LexemeC*] suffixes
 | 
						|
        cdef int orig_size
 | 
						|
        orig_size = tokens.length
 | 
						|
        span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes,
 | 
						|
                                   has_special, with_special_cases)
 | 
						|
        self._attach_tokens(tokens, span, &prefixes, &suffixes, has_special,
 | 
						|
                            with_special_cases)
 | 
						|
        self._save_cached(&tokens.c[orig_size], orig_key, has_special,
 | 
						|
                          tokens.length - orig_size)
 | 
						|
 | 
						|
    cdef unicode _split_affixes(self, Pool mem, unicode string,
 | 
						|
                                vector[const LexemeC*] *prefixes,
 | 
						|
                                vector[const LexemeC*] *suffixes,
 | 
						|
                                int* has_special,
 | 
						|
                                bint with_special_cases):
 | 
						|
        cdef size_t i
 | 
						|
        cdef unicode prefix
 | 
						|
        cdef unicode suffix
 | 
						|
        cdef unicode minus_pre
 | 
						|
        cdef unicode minus_suf
 | 
						|
        cdef size_t last_size = 0
 | 
						|
        while string and len(string) != last_size:
 | 
						|
            if self.token_match and self.token_match(string):
 | 
						|
                break
 | 
						|
            if with_special_cases and self._specials.get(hash_string(string)) != NULL:
 | 
						|
                break
 | 
						|
            last_size = len(string)
 | 
						|
            pre_len = self.find_prefix(string)
 | 
						|
            if pre_len != 0:
 | 
						|
                prefix = string[:pre_len]
 | 
						|
                minus_pre = string[pre_len:]
 | 
						|
                if minus_pre and with_special_cases and self._specials.get(hash_string(minus_pre)) != NULL:
 | 
						|
                    string = minus_pre
 | 
						|
                    prefixes.push_back(self.vocab.get(mem, prefix))
 | 
						|
                    break
 | 
						|
            suf_len = self.find_suffix(string)
 | 
						|
            if suf_len != 0:
 | 
						|
                suffix = string[-suf_len:]
 | 
						|
                minus_suf = string[:-suf_len]
 | 
						|
                if minus_suf and with_special_cases and self._specials.get(hash_string(minus_suf)) != NULL:
 | 
						|
                    string = minus_suf
 | 
						|
                    suffixes.push_back(self.vocab.get(mem, suffix))
 | 
						|
                    break
 | 
						|
            if pre_len and suf_len and (pre_len + suf_len) <= len(string):
 | 
						|
                string = string[pre_len:-suf_len]
 | 
						|
                prefixes.push_back(self.vocab.get(mem, prefix))
 | 
						|
                suffixes.push_back(self.vocab.get(mem, suffix))
 | 
						|
            elif pre_len:
 | 
						|
                string = minus_pre
 | 
						|
                prefixes.push_back(self.vocab.get(mem, prefix))
 | 
						|
            elif suf_len:
 | 
						|
                string = minus_suf
 | 
						|
                suffixes.push_back(self.vocab.get(mem, suffix))
 | 
						|
        return string
 | 
						|
 | 
						|
    cdef int _attach_tokens(self, Doc tokens, unicode string,
 | 
						|
                            vector[const LexemeC*] *prefixes,
 | 
						|
                            vector[const LexemeC*] *suffixes,
 | 
						|
                            int* has_special,
 | 
						|
                            bint with_special_cases) except -1:
 | 
						|
        cdef bint specials_hit = 0
 | 
						|
        cdef bint cache_hit = 0
 | 
						|
        cdef int split, end
 | 
						|
        cdef const LexemeC* const* lexemes
 | 
						|
        cdef const LexemeC* lexeme
 | 
						|
        cdef unicode span
 | 
						|
        cdef int i
 | 
						|
        if prefixes.size():
 | 
						|
            for i in range(prefixes.size()):
 | 
						|
                tokens.push_back(prefixes[0][i], False)
 | 
						|
        if string:
 | 
						|
            if self._try_specials_and_cache(hash_string(string), tokens, has_special, with_special_cases):
 | 
						|
                pass
 | 
						|
            elif (self.token_match and self.token_match(string)) or \
 | 
						|
                    (self.url_match and \
 | 
						|
                    self.url_match(string)):
 | 
						|
                # We're always saying 'no' to spaces here -- the caller will
 | 
						|
                # fix up the outermost one, with reference to the original.
 | 
						|
                # See Issue #859
 | 
						|
                tokens.push_back(self.vocab.get(tokens.mem, string), False)
 | 
						|
            else:
 | 
						|
                matches = self.find_infix(string)
 | 
						|
                if not matches:
 | 
						|
                    tokens.push_back(self.vocab.get(tokens.mem, string), False)
 | 
						|
                else:
 | 
						|
                    # Let's say we have dyn-o-mite-dave - the regex finds the
 | 
						|
                    # start and end positions of the hyphens
 | 
						|
                    start = 0
 | 
						|
                    start_before_infixes = start
 | 
						|
                    for match in matches:
 | 
						|
                        infix_start = match.start()
 | 
						|
                        infix_end = match.end()
 | 
						|
 | 
						|
                        if infix_start == start_before_infixes:
 | 
						|
                            continue
 | 
						|
 | 
						|
                        if infix_start != start:
 | 
						|
                            span = string[start:infix_start]
 | 
						|
                            tokens.push_back(self.vocab.get(tokens.mem, span), False)
 | 
						|
 | 
						|
                        if infix_start != infix_end:
 | 
						|
                            # If infix_start != infix_end, it means the infix
 | 
						|
                            # token is non-empty. Empty infix tokens are useful
 | 
						|
                            # for tokenization in some languages (see
 | 
						|
                            # https://github.com/explosion/spaCy/issues/768)
 | 
						|
                            infix_span = string[infix_start:infix_end]
 | 
						|
                            tokens.push_back(self.vocab.get(tokens.mem, infix_span), False)
 | 
						|
                        start = infix_end
 | 
						|
                    span = string[start:]
 | 
						|
                    if span:
 | 
						|
                        tokens.push_back(self.vocab.get(tokens.mem, span), False)
 | 
						|
        cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
 | 
						|
        while it != suffixes.rend():
 | 
						|
            lexeme = deref(it)
 | 
						|
            preinc(it)
 | 
						|
            tokens.push_back(lexeme, False)
 | 
						|
 | 
						|
    cdef int _save_cached(self, const TokenC* tokens, hash_t key,
 | 
						|
                          int* has_special, int n) except -1:
 | 
						|
        cdef int i
 | 
						|
        if n <= 0:
 | 
						|
            # avoid mem alloc of zero length
 | 
						|
            return 0
 | 
						|
        for i in range(n):
 | 
						|
            if self.vocab._by_orth.get(tokens[i].lex.orth) == NULL:
 | 
						|
                return 0
 | 
						|
        # See #1250
 | 
						|
        if has_special[0]:
 | 
						|
            return 0
 | 
						|
        cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
 | 
						|
        cached.length = n
 | 
						|
        cached.is_lex = True
 | 
						|
        lexemes = <const LexemeC**>self.mem.alloc(n, sizeof(LexemeC**))
 | 
						|
        for i in range(n):
 | 
						|
            lexemes[i] = tokens[i].lex
 | 
						|
        cached.data.lexemes = <const LexemeC* const*>lexemes
 | 
						|
        self._cache.set(key, cached)
 | 
						|
 | 
						|
    def find_infix(self, unicode string):
 | 
						|
        """Find internal split points of the string, such as hyphens.
 | 
						|
 | 
						|
        string (str): The string to segment.
 | 
						|
        RETURNS (list): A list of `re.MatchObject` objects that have `.start()`
 | 
						|
            and `.end()` methods, denoting the placement of internal segment
 | 
						|
            separators, e.g. hyphens.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#find_infix
 | 
						|
        """
 | 
						|
        if self.infix_finditer is None:
 | 
						|
            return 0
 | 
						|
        return list(self.infix_finditer(string))
 | 
						|
 | 
						|
    def find_prefix(self, unicode string):
 | 
						|
        """Find the length of a prefix that should be segmented from the
 | 
						|
        string, or None if no prefix rules match.
 | 
						|
 | 
						|
        string (str): The string to segment.
 | 
						|
        RETURNS (int): The length of the prefix if present, otherwise `None`.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#find_prefix
 | 
						|
        """
 | 
						|
        if self.prefix_search is None:
 | 
						|
            return 0
 | 
						|
        match = self.prefix_search(string)
 | 
						|
        return (match.end() - match.start()) if match is not None else 0
 | 
						|
 | 
						|
    def find_suffix(self, unicode string):
 | 
						|
        """Find the length of a suffix that should be segmented from the
 | 
						|
        string, or None if no suffix rules match.
 | 
						|
 | 
						|
        string (str): The string to segment.
 | 
						|
        Returns (int): The length of the suffix if present, otherwise `None`.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#find_suffix
 | 
						|
        """
 | 
						|
        if self.suffix_search is None:
 | 
						|
            return 0
 | 
						|
        match = self.suffix_search(string)
 | 
						|
        return (match.end() - match.start()) if match is not None else 0
 | 
						|
 | 
						|
    def _load_special_cases(self, special_cases):
 | 
						|
        """Add special-case tokenization rules."""
 | 
						|
        if special_cases is not None:
 | 
						|
            for chunk, substrings in sorted(special_cases.items()):
 | 
						|
                self.add_special_case(chunk, substrings)
 | 
						|
 | 
						|
    def _validate_special_case(self, chunk, substrings):
 | 
						|
        """Check whether the `ORTH` fields match the string. Check that
 | 
						|
        additional features beyond `ORTH` and `NORM` are not set by the
 | 
						|
        exception.
 | 
						|
 | 
						|
        chunk (str): The string to specially tokenize.
 | 
						|
        substrings (iterable): A sequence of dicts, where each dict describes
 | 
						|
            a token and its attributes.
 | 
						|
        """
 | 
						|
        attrs = [intify_attrs(spec, _do_deprecated=True) for spec in substrings]
 | 
						|
        orth = "".join([spec[ORTH] for spec in attrs])
 | 
						|
        if chunk != orth:
 | 
						|
            raise ValueError(Errors.E997.format(chunk=chunk, orth=orth, token_attrs=substrings))
 | 
						|
        for substring in attrs:
 | 
						|
            for attr in substring:
 | 
						|
                if attr not in (ORTH, NORM):
 | 
						|
                    raise ValueError(Errors.E1005.format(attr=self.vocab.strings[attr], chunk=chunk))
 | 
						|
 | 
						|
    def add_special_case(self, unicode string, substrings):
 | 
						|
        """Add a special-case tokenization rule.
 | 
						|
 | 
						|
        string (str): The string to specially tokenize.
 | 
						|
        substrings (iterable): A sequence of dicts, where each dict describes
 | 
						|
            a token and its attributes. The `ORTH` fields of the attributes
 | 
						|
            must exactly match the string when they are concatenated.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#add_special_case
 | 
						|
        """
 | 
						|
        self._validate_special_case(string, substrings)
 | 
						|
        substrings = list(substrings)
 | 
						|
        cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
 | 
						|
        cached.length = len(substrings)
 | 
						|
        cached.is_lex = False
 | 
						|
        cached.data.tokens = self.vocab.make_fused_token(substrings)
 | 
						|
        key = hash_string(string)
 | 
						|
        stale_special = <_Cached*>self._specials.get(key)
 | 
						|
        self._specials.set(key, cached)
 | 
						|
        if stale_special is not NULL:
 | 
						|
            self.mem.free(stale_special)
 | 
						|
        self._rules[string] = substrings
 | 
						|
        self._flush_cache()
 | 
						|
        if self.find_prefix(string) or self.find_infix(string) or self.find_suffix(string) or " " in string:
 | 
						|
            self._special_matcher.add(string, None, self._tokenize_affixes(string, False))
 | 
						|
 | 
						|
    def _reload_special_cases(self):
 | 
						|
        self._flush_cache()
 | 
						|
        self._flush_specials()
 | 
						|
        self._load_special_cases(self._rules)
 | 
						|
 | 
						|
    def explain(self, text):
 | 
						|
        """A debugging tokenizer that provides information about which
 | 
						|
        tokenizer rule or pattern was matched for each token. The tokens
 | 
						|
        produced are identical to `nlp.tokenizer()` except for whitespace
 | 
						|
        tokens.
 | 
						|
 | 
						|
        string (str): The string to tokenize.
 | 
						|
        RETURNS (list): A list of (pattern_string, token_string) tuples
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#explain
 | 
						|
        """
 | 
						|
        prefix_search = self.prefix_search
 | 
						|
        if prefix_search is None:
 | 
						|
            prefix_search = re.compile("a^").search
 | 
						|
        suffix_search = self.suffix_search
 | 
						|
        if suffix_search is None:
 | 
						|
            suffix_search = re.compile("a^").search
 | 
						|
        infix_finditer = self.infix_finditer
 | 
						|
        if infix_finditer is None:
 | 
						|
            infix_finditer = re.compile("a^").finditer
 | 
						|
        token_match = self.token_match
 | 
						|
        if token_match is None:
 | 
						|
            token_match = re.compile("a^").match
 | 
						|
        url_match = self.url_match
 | 
						|
        if url_match is None:
 | 
						|
            url_match = re.compile("a^").match
 | 
						|
        special_cases = {}
 | 
						|
        for orth, special_tokens in self.rules.items():
 | 
						|
            special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings, _do_deprecated=True) for special_token in special_tokens]
 | 
						|
        tokens = []
 | 
						|
        for substring in text.split():
 | 
						|
            suffixes = []
 | 
						|
            while substring:
 | 
						|
                while prefix_search(substring) or suffix_search(substring):
 | 
						|
                    if token_match(substring):
 | 
						|
                        tokens.append(("TOKEN_MATCH", substring))
 | 
						|
                        substring = ''
 | 
						|
                        break
 | 
						|
                    if substring in special_cases:
 | 
						|
                        tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
 | 
						|
                        substring = ''
 | 
						|
                        break
 | 
						|
                    if prefix_search(substring):
 | 
						|
                        split = prefix_search(substring).end()
 | 
						|
                        # break if pattern matches the empty string
 | 
						|
                        if split == 0:
 | 
						|
                            break
 | 
						|
                        tokens.append(("PREFIX", substring[:split]))
 | 
						|
                        substring = substring[split:]
 | 
						|
                        if substring in special_cases:
 | 
						|
                            continue
 | 
						|
                    if suffix_search(substring):
 | 
						|
                        split = suffix_search(substring).start()
 | 
						|
                        # break if pattern matches the empty string
 | 
						|
                        if split == len(substring):
 | 
						|
                            break
 | 
						|
                        suffixes.append(("SUFFIX", substring[split:]))
 | 
						|
                        substring = substring[:split]
 | 
						|
                if len(substring) == 0:
 | 
						|
                    continue
 | 
						|
                if token_match(substring):
 | 
						|
                    tokens.append(("TOKEN_MATCH", substring))
 | 
						|
                    substring = ''
 | 
						|
                elif url_match(substring):
 | 
						|
                    tokens.append(("URL_MATCH", substring))
 | 
						|
                    substring = ''
 | 
						|
                elif substring in special_cases:
 | 
						|
                    tokens.extend((f"SPECIAL-{i + 1}", self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
 | 
						|
                    substring = ''
 | 
						|
                elif list(infix_finditer(substring)):
 | 
						|
                    infixes = infix_finditer(substring)
 | 
						|
                    offset = 0
 | 
						|
                    for match in infixes:
 | 
						|
                        if substring[offset : match.start()]:
 | 
						|
                            tokens.append(("TOKEN", substring[offset : match.start()]))
 | 
						|
                        if substring[match.start() : match.end()]:
 | 
						|
                            tokens.append(("INFIX", substring[match.start() : match.end()]))
 | 
						|
                        offset = match.end()
 | 
						|
                    if substring[offset:]:
 | 
						|
                        tokens.append(("TOKEN", substring[offset:]))
 | 
						|
                    substring = ''
 | 
						|
                elif substring:
 | 
						|
                    tokens.append(("TOKEN", substring))
 | 
						|
                    substring = ''
 | 
						|
            tokens.extend(reversed(suffixes))
 | 
						|
        # Find matches for special cases handled by special matcher
 | 
						|
        words, spaces = get_words_and_spaces([t[1] for t in tokens], text)
 | 
						|
        t_words = []
 | 
						|
        t_spaces = []
 | 
						|
        for word, space in zip(words, spaces):
 | 
						|
            if not word.isspace():
 | 
						|
                t_words.append(word)
 | 
						|
                t_spaces.append(space)
 | 
						|
        doc = Doc(self.vocab, words=t_words, spaces=t_spaces)
 | 
						|
        matches = self._special_matcher(doc)
 | 
						|
        spans = [Span(doc, s, e, label=m_id) for m_id, s, e in matches]
 | 
						|
        spans = util.filter_spans(spans)
 | 
						|
        # Replace matched tokens with their exceptions
 | 
						|
        i = 0
 | 
						|
        final_tokens = []
 | 
						|
        spans_by_start = {s.start: s for s in spans}
 | 
						|
        while i < len(tokens):
 | 
						|
            if i in spans_by_start:
 | 
						|
                span = spans_by_start[i]
 | 
						|
                exc = [d[ORTH] for d in special_cases[span.label_]]
 | 
						|
                for j, orth in enumerate(exc):
 | 
						|
                    final_tokens.append((f"SPECIAL-{j + 1}", self.vocab.strings[orth]))
 | 
						|
                i += len(span)
 | 
						|
            else:
 | 
						|
                final_tokens.append(tokens[i])
 | 
						|
                i += 1
 | 
						|
        return final_tokens
 | 
						|
 | 
						|
    def score(self, examples, **kwargs):
 | 
						|
        validate_examples(examples, "Tokenizer.score")
 | 
						|
        return Scorer.score_tokenization(examples)
 | 
						|
 | 
						|
    def to_disk(self, path, **kwargs):
 | 
						|
        """Save the current state to a directory.
 | 
						|
 | 
						|
        path (str / Path): A path to a directory, which will be created if
 | 
						|
            it doesn't exist.
 | 
						|
        exclude (list): String names of serialization fields to exclude.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#to_disk
 | 
						|
        """
 | 
						|
        path = util.ensure_path(path)
 | 
						|
        with path.open("wb") as file_:
 | 
						|
            file_.write(self.to_bytes(**kwargs))
 | 
						|
 | 
						|
    def from_disk(self, path, *, exclude=tuple()):
 | 
						|
        """Loads state from a directory. Modifies the object in place and
 | 
						|
        returns it.
 | 
						|
 | 
						|
        path (str / Path): A path to a directory.
 | 
						|
        exclude (list): String names of serialization fields to exclude.
 | 
						|
        RETURNS (Tokenizer): The modified `Tokenizer` object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#from_disk
 | 
						|
        """
 | 
						|
        path = util.ensure_path(path)
 | 
						|
        with path.open("rb") as file_:
 | 
						|
            bytes_data = file_.read()
 | 
						|
        self.from_bytes(bytes_data, exclude=exclude)
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_bytes(self, *, exclude=tuple()):
 | 
						|
        """Serialize the current state to a binary string.
 | 
						|
 | 
						|
        exclude (list): String names of serialization fields to exclude.
 | 
						|
        RETURNS (bytes): The serialized form of the `Tokenizer` object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#to_bytes
 | 
						|
        """
 | 
						|
        serializers = {
 | 
						|
            "vocab": lambda: self.vocab.to_bytes(exclude=exclude),
 | 
						|
            "prefix_search": lambda: _get_regex_pattern(self.prefix_search),
 | 
						|
            "suffix_search": lambda: _get_regex_pattern(self.suffix_search),
 | 
						|
            "infix_finditer": lambda: _get_regex_pattern(self.infix_finditer),
 | 
						|
            "token_match": lambda: _get_regex_pattern(self.token_match),
 | 
						|
            "url_match": lambda: _get_regex_pattern(self.url_match),
 | 
						|
            "exceptions": lambda: dict(sorted(self._rules.items()))
 | 
						|
        }
 | 
						|
        return util.to_bytes(serializers, exclude)
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data, *, exclude=tuple()):
 | 
						|
        """Load state from a binary string.
 | 
						|
 | 
						|
        bytes_data (bytes): The data to load from.
 | 
						|
        exclude (list): String names of serialization fields to exclude.
 | 
						|
        RETURNS (Tokenizer): The `Tokenizer` object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tokenizer#from_bytes
 | 
						|
        """
 | 
						|
        data = {}
 | 
						|
        deserializers = {
 | 
						|
            "vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
 | 
						|
            "prefix_search": lambda b: data.setdefault("prefix_search", b),
 | 
						|
            "suffix_search": lambda b: data.setdefault("suffix_search", b),
 | 
						|
            "infix_finditer": lambda b: data.setdefault("infix_finditer", b),
 | 
						|
            "token_match": lambda b: data.setdefault("token_match", b),
 | 
						|
            "url_match": lambda b: data.setdefault("url_match", b),
 | 
						|
            "exceptions": lambda b: data.setdefault("rules", b)
 | 
						|
        }
 | 
						|
        # reset all properties and flush all caches (through rules),
 | 
						|
        # reset rules first so that _reload_special_cases is trivial/fast as
 | 
						|
        # the other properties are reset
 | 
						|
        self.rules = {}
 | 
						|
        self.prefix_search = None
 | 
						|
        self.suffix_search = None
 | 
						|
        self.infix_finditer = None
 | 
						|
        self.token_match = None
 | 
						|
        self.url_match = None
 | 
						|
        msg = util.from_bytes(bytes_data, deserializers, exclude)
 | 
						|
        if "prefix_search" in data and isinstance(data["prefix_search"], str):
 | 
						|
            self.prefix_search = re.compile(data["prefix_search"]).search
 | 
						|
        if "suffix_search" in data and isinstance(data["suffix_search"], str):
 | 
						|
            self.suffix_search = re.compile(data["suffix_search"]).search
 | 
						|
        if "infix_finditer" in data and isinstance(data["infix_finditer"], str):
 | 
						|
            self.infix_finditer = re.compile(data["infix_finditer"]).finditer
 | 
						|
        if "token_match" in data and isinstance(data["token_match"], str):
 | 
						|
            self.token_match = re.compile(data["token_match"]).match
 | 
						|
        if "url_match" in data and isinstance(data["url_match"], str):
 | 
						|
            self.url_match = re.compile(data["url_match"]).match
 | 
						|
        if "rules" in data and isinstance(data["rules"], dict):
 | 
						|
            self.rules = data["rules"]
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
def _get_regex_pattern(regex):
 | 
						|
    """Get a pattern string for a regex, or None if the pattern is None."""
 | 
						|
    return None if regex is None else regex.__self__.pattern
 | 
						|
 | 
						|
 | 
						|
cdef extern from "<algorithm>" namespace "std" nogil:
 | 
						|
    void stdsort "sort"(vector[SpanC].iterator,
 | 
						|
                        vector[SpanC].iterator,
 | 
						|
                        bint (*)(SpanC, SpanC))
 | 
						|
 | 
						|
 | 
						|
cdef bint len_start_cmp(SpanC a, SpanC b) nogil:
 | 
						|
    if a.end - a.start == b.end - b.start:
 | 
						|
        return b.start < a.start
 | 
						|
    return a.end - a.start < b.end - b.start
 | 
						|
 | 
						|
 | 
						|
cdef bint start_cmp(SpanC a, SpanC b) nogil:
 | 
						|
    return a.start < b.start
 |