mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			395 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			395 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0
 | ||
| 
 | ||
| include ../../_includes/_mixins
 | ||
| 
 | ||
| p
 | ||
|     |  We also re-wrote a large part of the documentation and usage workflows,
 | ||
|     |  and added more examples.
 | ||
| 
 | ||
| +h(2, "features") New features
 | ||
| 
 | ||
| p
 | ||
|     |  This section contains an overview of the most important
 | ||
|     |  #[strong new features and improvements]. The #[+a("/docs/api") API docs]
 | ||
|     |  include additional  deprecation notes. New methods and functions that
 | ||
|     |  were introduced in this version are marked with a #[+tag-new(2)] tag.
 | ||
| 
 | ||
| p
 | ||
|     |  To help you make the most of v2.0, we also
 | ||
|     |  #[strong re-wrote almost all of the usage guides and API docs], and added
 | ||
|     |  more real-world examples. If you're new to spaCy, or just want to brush
 | ||
|     |  up on some NLP basics and the details of the library, check out
 | ||
|     |  the #[+a("/docs/usage/spacy-101") spaCy 101 guide] that explains the most
 | ||
|     |  important concepts with examples and illustrations.
 | ||
| 
 | ||
| +h(3, "features-pipelines") Improved processing pipelines
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     # Modify an existing pipeline
 | ||
|     nlp = spacy.load('en')
 | ||
|     nlp.pipeline.append(my_component)
 | ||
| 
 | ||
|     # Register a factory to create a component
 | ||
|     spacy.set_factory('my_factory', my_factory)
 | ||
|     nlp = Language(pipeline=['my_factory', mycomponent])
 | ||
| 
 | ||
| p
 | ||
|     |  It's now much easier to #[strong customise the pipeline] with your own
 | ||
|     |  components, functions that receive a #[code Doc] object, modify and
 | ||
|     |  return it. If your component is stateful, you can define and register a
 | ||
|     |  factory which receives the shared #[code Vocab] object and returns a
 | ||
|     |  component. spaCy's default components can be added to your pipeline by
 | ||
|     |  using their string IDs. This way, you won't have to worry about finding
 | ||
|     |  and implementing them – simply add #[code "tagger"] to the pipeline,
 | ||
|     |  and spaCy will know what to do.
 | ||
| 
 | ||
| +image
 | ||
|     include ../../assets/img/docs/pipeline.svg
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong API:] #[+api("language") #[code Language]]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/language-processing-pipeline") Processing text]
 | ||
| 
 | ||
| +h(3, "features-hash-ids") Hash values instead of integer IDs
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'I love coffee')
 | ||
|     assert doc.vocab.strings[u'coffee'] == 3197928453018144401
 | ||
|     assert doc.vocab.strings[3197928453018144401] == u'coffee'
 | ||
| 
 | ||
|     beer_hash = doc.vocab.strings.add(u'beer')
 | ||
|     assert doc.vocab.strings[u'beer'] == beer_hash
 | ||
|     assert doc.vocab.strings[beer_hash] == u'beer'
 | ||
| 
 | ||
| p
 | ||
|     |  The #[+api("stringstore") #[code StringStore]] now resolves all strings
 | ||
|     |  to hash values instead of integer IDs. This means that the string-to-int
 | ||
|     |  mapping #[strong no longer depends on the vocabulary state], making a lot
 | ||
|     |  of workflows much simpler, especially during training. Unlike integer IDs
 | ||
|     |  in spaCy v1.x, hash values will #[strong always match] – even across
 | ||
|     |  models. Strings can now be added explicitly using the new
 | ||
|     |  #[+api("stringstore#add") #[code Stringstore.add]] method. A token's hash
 | ||
|     |  is available via #[code token.orth].
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong API:] #[+api("stringstore") #[code StringStore]]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/spacy-101#vocab") Vocab, hashes and lexemes 101]
 | ||
| 
 | ||
| +h(3, "features-serializer") Saving, loading and serialization
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     nlp = spacy.load('en') # shortcut link
 | ||
|     nlp = spacy.load('en_core_web_sm') # package
 | ||
|     nlp = spacy.load('/path/to/en') # unicode path
 | ||
|     nlp = spacy.load(Path('/path/to/en')) # pathlib Path
 | ||
| 
 | ||
|     nlp.to_disk('/path/to/nlp')
 | ||
|     nlp = English().from_disk('/path/to/nlp')
 | ||
| 
 | ||
| p
 | ||
|     |  spay's serialization API has been made consistent across classes and
 | ||
|     |  objects. All container classes, i.e. #[code Language], #[code Doc],
 | ||
|     |  #[code Vocab] and #[code StringStore] now have a #[code to_bytes()],
 | ||
|     |  #[code from_bytes()], #[code to_disk()] and #[code from_disk()] method
 | ||
|     |  that supports the Pickle protocol.
 | ||
| 
 | ||
| p
 | ||
|     |  The improved #[code spacy.load] makes loading models easier and more
 | ||
|     |  transparent. You can load a model by supplying its
 | ||
|     |  #[+a("/docs/usage/models#usage") shortcut link], the name of an installed
 | ||
|     |  #[+a("/docs/usage/saving-loading#generating") model package] or a path.
 | ||
|     |  The #[code Language] class to initialise will be determined based on the
 | ||
|     |  model's settings. For a blank language, you can import the class directly,
 | ||
|     |  e.g. #[code from spacy.lang.en import English].
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong API:] #[+api("spacy#load") #[code spacy.load]], #[+api("binder") #[code Binder]]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
 | ||
| 
 | ||
| +h(3, "features-displacy") displaCy visualizer with Jupyter support
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy import displacy
 | ||
|     doc = nlp(u'This is a sentence about Facebook.')
 | ||
|     displacy.serve(doc, style='dep') # run the web server
 | ||
|     html = displacy.render(doc, style='ent') # generate HTML
 | ||
| 
 | ||
| p
 | ||
|     |  Our popular dependency and named entity visualizers are now an official
 | ||
|     |  part of the spaCy library! displaCy can run a simple web server, or
 | ||
|     |  generate raw HTML markup or SVG files to be exported. You can pass in one
 | ||
|     |  or more docs, and customise the style. displaCy also auto-detects whether
 | ||
|     |  you're running #[+a("https://jupyter.org") Jupyter] and will render the
 | ||
|     |  visualizations in your notebook.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong API:] #[+api("displacy") #[code displacy]]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/visualizers") Visualizing spaCy]
 | ||
| 
 | ||
| +h(3, "features-language") Improved language data and lazy loading
 | ||
| 
 | ||
| p
 | ||
|     |  Language-specfic data now lives in its own submodule, #[code spacy.lang].
 | ||
|     |  Languages are lazy-loaded, i.e. only loaded when you import a
 | ||
|     |  #[code Language] class, or load a model that initialises one. This allows
 | ||
|     |  languages to contain more custom data, e.g. lemmatizer lookup tables, or
 | ||
|     |  complex regular expressions. The language data has also been tidied up
 | ||
|     |  and simplified. spaCy now also supports simple lookup-based lemmatization.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong API:] #[+api("language") #[code Language]]
 | ||
|     |  #[strong Code:] #[+src(gh("spaCy", "spacy/lang")) spacy/lang]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/adding-languages") Adding languages]
 | ||
| 
 | ||
| +h(3, "features-matcher") Revised matcher API
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.matcher import Matcher
 | ||
|     matcher = Matcher(nlp.vocab)
 | ||
|     matcher.add('HEARTS', None, [{'ORTH': '❤️', 'OP': '+'}])
 | ||
|     assert len(matcher) == 1
 | ||
|     assert 'HEARTS' in matcher
 | ||
| 
 | ||
| p
 | ||
|     |  Patterns can now be added to the matcher by calling
 | ||
|     |  #[+api("matcher-add") #[code matcher.add()]] with a match ID, an optional
 | ||
|     |  callback function to be invoked on each match, and one or more patterns.
 | ||
|     |  This allows you to write powerful, pattern-specific logic using only one
 | ||
|     |  matcher. For example, you might only want to merge some entity types,
 | ||
|     |  and set custom flags for other matched patterns.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong API:] #[+api("matcher") #[code Matcher]]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/rule-based-matching") Rule-based matching]
 | ||
| 
 | ||
| +h(3, "features-models") Neural network models for English, German, French, Spanish and multi-language NER
 | ||
| 
 | ||
| +aside-code("Example", "bash").
 | ||
|     python -m spacy download en # default English model
 | ||
|     python -m spacy download de # default German model
 | ||
|     python -m spacy download fr # default French model
 | ||
|     python -m spacy download es # default Spanish model
 | ||
|     python -m spacy download xx_ent_web_md # multi-language NER
 | ||
| 
 | ||
| p
 | ||
|     |  spaCy v2.0 comes with new and improved neural network models for English,
 | ||
|     |  German, French and Spanish, as well as a multi-language named entity
 | ||
|     |  recognition model trained on Wikipedia. #[strong GPU usage] is now
 | ||
|     |  supported via #[+a("http://chainer.org") Chainer]'s CuPy module.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[strong Details:] #[+a("/docs/api/language-models") Languages],
 | ||
|     |  #[+src(gh("spacy-models")) spacy-models]
 | ||
|     |  #[strong Usage:] #[+a("/docs/usage/models") Models],
 | ||
|     |  #[+a("/docs/usage#gpu") Using spaCy with GPU]
 | ||
| 
 | ||
| +h(2, "incompat") Backwards incompatibilities
 | ||
| 
 | ||
| +table(["Old", "New"])
 | ||
|     +row
 | ||
|         +cell
 | ||
|             |  #[code spacy.en]
 | ||
|             |  #[code spacy.xx]
 | ||
|         +cell
 | ||
|             |  #[code spacy.lang.en]
 | ||
|             |  #[code spacy.lang.xx]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code spacy.orth]
 | ||
|         +cell #[code spacy.lang.xx.lex_attrs]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code cli.model]
 | ||
|         +cell -
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Language.save_to_directory]
 | ||
|         +cell #[+api("language#to_disk") #[code Language.to_disk]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Language.create_make_doc]
 | ||
|         +cell #[+api("language#attributes") #[code Language.tokenizer]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell
 | ||
|             |  #[code Vocab.load]
 | ||
|             |  #[code Vocab.load_lexemes]
 | ||
|             |  #[code Vocab.load_vectors]
 | ||
|             |  #[code Vocab.load_vectors_from_bin_loc]
 | ||
|         +cell
 | ||
|             |  #[+api("vocab#from_disk") #[code Vocab.from_disk]]
 | ||
|             |  #[+api("vocab#from_bytes") #[code Vocab.from_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell
 | ||
|             |  #[code Vocab.dump]
 | ||
|             |  #[code Vocab.dump_vectors]
 | ||
|         +cell
 | ||
|             |  #[+api("vocab#to_disk") #[code Vocab.to_disk]]
 | ||
|             |  #[+api("vocab#to_bytes") #[code Vocab.to_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell
 | ||
|             |  #[code StringStore.load]
 | ||
|         +cell
 | ||
|             |  #[+api("stringstore#from_disk") #[code StringStore.from_disk]]
 | ||
|             |  #[+api("stringstore#from_bytes") #[code StringStore.from_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell
 | ||
|             |  #[code StringStore.dump]
 | ||
|         +cell
 | ||
|             |  #[+api("stringstore#to_disk") #[code StringStore.to_disk]]
 | ||
|             |  #[+api("stringstore#to_bytes") #[code StringStore.to_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Tokenizer.load]
 | ||
|         +cell -
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Tagger.load]
 | ||
|         +cell
 | ||
|             |  #[+api("tagger#from_disk") #[code Tagger.from_disk]]
 | ||
|             |  #[+api("tagger#from_bytes") #[code Tagger.from_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code DependencyParser.load]
 | ||
|         +cell
 | ||
|             |  #[+api("dependencyparser#from_disk") #[code DependencyParser.from_disk]]
 | ||
|             |  #[+api("dependencyparser#from_bytes") #[code DependencyParser.from_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code EntityRecognizer.load]
 | ||
|         +cell
 | ||
|             |  #[+api("entityrecognizer#from_disk") #[code EntityRecognizer.from_disk]]
 | ||
|             |  #[+api("entityrecognizer#from_bytes") #[code EntityRecognizer.from_bytes]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Matcher.load]
 | ||
|         +cell -
 | ||
| 
 | ||
|     +row
 | ||
|         +cell
 | ||
|             |  #[code Matcher.add_pattern]
 | ||
|             |  #[code Matcher.add_entity]
 | ||
|         +cell #[+api("matcher#add") #[code Matcher.add]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Matcher.get_entity]
 | ||
|         +cell #[+api("matcher#get") #[code Matcher.get]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Matcher.has_entity]
 | ||
|         +cell #[+api("matcher#contains") #[code Matcher.__contains__]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Doc.read_bytes]
 | ||
|         +cell #[+api("binder") #[code Binder]]
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code Token.is_ancestor_of]
 | ||
|         +cell #[+api("token#is_ancestor") #[code Token.is_ancestor]]
 | ||
| 
 | ||
| +h(2, "migrating") Migrating from spaCy 1.x
 | ||
| 
 | ||
| +list
 | ||
|     +item Saving, loading and serialization.
 | ||
|     +item Processing pipelines and language data.
 | ||
|     +item Adding patterns and callbacks to the matcher.
 | ||
|     +item Models trained with spaCy 1.x.
 | ||
| 
 | ||
| +infobox("Some tips")
 | ||
|     |  Before migrating, we strongly recommend writing a few
 | ||
|     |  #[strong simple tests] specific to how you're using spaCy in your
 | ||
|     |  application. This makes it easier to check whether your code requires
 | ||
|     |  changes, and if so, which parts are affected.
 | ||
|     |  (By the way, feel free contribute your tests to
 | ||
|     |  #[+src(gh("spaCy", "spacy/tests")) our test suite] – this will also ensure
 | ||
|     |  we never accidentally introduce a bug in a workflow that's
 | ||
|     |  important to you.) If you've trained your own models, keep in mind that
 | ||
|     |  your train and runtime inputs must match. This means you'll have to
 | ||
|     |  #[strong retrain your models] with spaCy v2.0 to make them compatible.
 | ||
| 
 | ||
| 
 | ||
| +h(3, "migrating-saving-loading") Saving, loading and serialization
 | ||
| 
 | ||
| p
 | ||
|     |  Double-check all calls to #[code spacy.load()] and make sure they don't
 | ||
|     |  use the #[code path] keyword argument. If you're only loading in binary
 | ||
|     |  data and not a model package that can construct its own #[code Language]
 | ||
|     |  class and pipeline, you should now use the
 | ||
|     |  #[+api("language#from_disk") #[code Language.from_disk()]] method.
 | ||
| 
 | ||
| +code-new.
 | ||
|     nlp = spacy.load('/model')
 | ||
|     nlp = English().from_disk('/model/data')
 | ||
| +code-old nlp = spacy.load('en', path='/model')
 | ||
| 
 | ||
| p
 | ||
|     |  Review all other code that writes state to disk or bytes.
 | ||
|     |  All containers, now share the same, consistent API for saving and
 | ||
|     |  loading. Replace saving with #[code to_disk()] or #[code to_bytes()], and
 | ||
|     |  loading with #[code from_disk()] and #[code from_bytes()].
 | ||
| 
 | ||
| +code-new.
 | ||
|     nlp.to_disk('/model')
 | ||
|     nlp.vocab.to_disk('/vocab')
 | ||
| 
 | ||
| +code-old.
 | ||
|     nlp.save_to_directory('/model')
 | ||
|     nlp.vocab.dump('/vocab')
 | ||
| 
 | ||
| +h(3, "migrating-strings") Strings and hash values
 | ||
| 
 | ||
| +code-new.
 | ||
|     nlp.vocab.strings.add(u'coffee')
 | ||
|     nlp.vocab.strings[u'coffee']       # 3197928453018144401
 | ||
|     other_nlp.vocab.strings[u'coffee'] # 3197928453018144401
 | ||
| 
 | ||
| +code-old.
 | ||
|     nlp.vocab.strings[u'coffee']       # 3672
 | ||
|     other_nlp.vocab.strings[u'coffee'] # 40259
 | ||
| 
 | ||
| +h(3, "migrating-languages") Processing pipelines and language data
 | ||
| 
 | ||
| p
 | ||
|     |  If you're importing language data or #[code Language] classes, make sure
 | ||
|     |  to change your import statements to import from #[code spacy.lang]. If
 | ||
|     |  you've added your own custom language, it needs to be moved to
 | ||
|     |  #[code spacy/lang/xx] and adjusted accordingly.
 | ||
| 
 | ||
| +code-new from spacy.lang.en import English
 | ||
| +code-old from spacy.en import English
 | ||
| 
 | ||
| p
 | ||
|     |  If you've been using custom pipeline components, check out the new
 | ||
|     |  guide on #[+a("/docs/usage/language-processing-pipelines") processing pipelines].
 | ||
|     |  Appending functions to the pipeline still works – but you might be able
 | ||
|     |  to make this more convenient by registering "component factories".
 | ||
|     |  Components of the processing pipeline can now be disabled by passing a
 | ||
|     |  list of their names to the #[code disable] keyword argument on loading
 | ||
|     |  or processing.
 | ||
| 
 | ||
| +code-new.
 | ||
|     nlp = spacy.load('en', disable=['tagger', 'ner'])
 | ||
|     doc = nlp(u"I don't want parsed", disable=['parser'])
 | ||
| +code-old.
 | ||
|     nlp = spacy.load('en', tagger=False, entity=False)
 | ||
|     doc = nlp(u"I don't want parsed", parse=False)
 | ||
| 
 | ||
| +h(3, "migrating-matcher") Adding patterns and callbacks to the matcher
 | ||
| 
 | ||
| p
 | ||
|     |  If you're using the matcher, you can now add patterns in one step. This
 | ||
|     |  should be easy to update – simply merge the ID, callback and patterns
 | ||
|     |  into one call to #[+api("matcher#add") #[code matcher.add()]].
 | ||
| 
 | ||
| +code-new.
 | ||
|     matcher.add('GoogleNow', merge_phrases, [{ORTH: 'Google'}, {ORTH: 'Now'}])
 | ||
| 
 | ||
| +code-old.
 | ||
|     matcher.add_entity('GoogleNow', on_match=merge_phrases)
 | ||
|     matcher.add_pattern('GoogleNow', [{ORTH: 'Google'}, {ORTH: 'Now'}])
 | ||
| 
 | ||
| +h(3, "migrating-models") Trained models
 |