spaCy/spacy/syntax/arc_eager.pyx

322 lines
11 KiB
Cython

from __future__ import unicode_literals
from ._state cimport State
from ._state cimport has_head, get_idx, get_s0, get_n0
from ._state cimport is_final, at_eol, pop_stack, push_stack, add_dep
from ._state cimport head_in_buffer, children_in_buffer
from ._state cimport head_in_stack, children_in_stack
from ..structs cimport TokenC
DEF NON_MONOTONIC = True
DEF USE_BREAK = True
cdef enum:
SHIFT
REDUCE
LEFT
RIGHT
BREAK_SHIFT
BREAK_RIGHT
N_MOVES
cdef inline bint _can_shift(const State* s) nogil:
return not at_eol(s)
cdef inline bint _can_right(const State* s) nogil:
return s.stack_len >= 1 and not at_eol(s)
cdef inline bint _can_left(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 1
else:
return s.stack_len >= 1 and not has_head(get_s0(s))
cdef inline bint _can_reduce(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 2
else:
return s.stack_len >= 2 and has_head(get_s0(s))
cdef inline bint _can_break_shift(const State* s) nogil:
cdef int i
if not USE_BREAK:
return False
elif not _can_shift(s):
return False
else:
# P. 757
# In UPP, if Shift(F) or RightArc(F) fail to result in a single parsing
# tree, they cannot be performed as well.
seen_headless = False
for i in range(s.stack_len):
if s.sent[s.stack[i]].head == 0:
return False
return True
cdef inline bint _can_break_right(const State* s) nogil:
cdef int i
if not USE_BREAK:
return False
elif not _can_right(s):
return False
else:
# P. 757
# In UPP, if Shift(F) or RightArc(F) fail to result in a single parsing
# tree, they cannot be performed as well.
seen_headless = False
for i in range(s.stack_len):
if s.sent[s.stack[i]].head == 0:
if seen_headless:
return False
else:
seen_headless = True
return True
cdef int _shift_cost(const State* s, const int* gold) except -1:
assert not at_eol(s)
cost = 0
cost += head_in_stack(s, s.i, gold)
cost += children_in_stack(s, s.i, gold)
if NON_MONOTONIC:
cost += gold[s.stack[0]] == s.i
return cost
cdef int _right_cost(const State* s, const int* gold) except -1:
assert s.stack_len >= 1
cost = 0
if gold[s.i] == s.stack[0]:
return cost
cost += head_in_buffer(s, s.i, gold)
cost += children_in_stack(s, s.i, gold)
cost += head_in_stack(s, s.i, gold)
if NON_MONOTONIC:
cost += gold[s.stack[0]] == s.i
return cost
cdef int _left_cost(const State* s, const int* gold) except -1:
assert s.stack_len >= 1
cost = 0
if gold[s.stack[0]] == s.i:
return cost
cost += head_in_buffer(s, s.stack[0], gold)
cost += children_in_buffer(s, s.stack[0], gold)
if NON_MONOTONIC and s.stack_len >= 2:
cost += gold[s.stack[0]] == s.stack[-1]
return cost
cdef int _reduce_cost(const State* s, const int* gold) except -1:
cdef int cost = 0
cost += children_in_buffer(s, s.stack[0], gold)
if NON_MONOTONIC:
cost += head_in_buffer(s, s.stack[0], gold)
return cost
cdef int _break_shift_cost(const State* s, const int* gold) except -1:
cdef int cost = _shift_cost(s, gold)
# When we break, we Reduce all of the words on the stack. So, the Break
# cost is the sum of the Reduce costs
for i in range(s.stack_len):
cost += children_in_buffer(s, s.stack[i], gold)
if NON_MONOTONIC:
cost += head_in_buffer(s, s.stack[i], gold)
return cost
cdef int _break_right_cost(const State* s, const int* gold) except -1:
cdef int cost = _right_cost(s, gold)
# When we break, we Reduce all of the words on the stack. So, the Break
# cost is the sum of the Reduce costs
for i in range(s.stack_len):
cost += children_in_buffer(s, s.stack[i], gold)
if NON_MONOTONIC:
cost += head_in_buffer(s, s.stack[i], gold)
return cost
cdef class TransitionSystem:
def __init__(self, list left_labels, list right_labels):
self.mem = Pool()
left_labels.sort()
right_labels.sort()
if 'ROOT' in right_labels:
right_labels.pop(right_labels.index('ROOT'))
if 'ROOT' in left_labels:
left_labels.pop(left_labels.index('ROOT'))
self.n_moves = 3 + len(left_labels) + len(right_labels) + len(right_labels)
moves = <Transition*>self.mem.alloc(self.n_moves, sizeof(Transition))
cdef int i = 0
moves[i].move = SHIFT
moves[i].label = 0
moves[i].clas = i
i += 1
moves[i].move = REDUCE
moves[i].label = 0
moves[i].clas = i
i += 1
self.label_ids = {'ROOT': 0}
cdef int label_id
for label_str in left_labels:
label_str = unicode(label_str)
label_id = self.label_ids.setdefault(label_str, len(self.label_ids))
moves[i].move = LEFT
moves[i].label = label_id
moves[i].clas = i
i += 1
for label_str in right_labels:
label_str = unicode(label_str)
label_id = self.label_ids.setdefault(label_str, len(self.label_ids))
moves[i].move = RIGHT
moves[i].label = label_id
moves[i].clas = i
i += 1
moves[i].move = BREAK_SHIFT
moves[i].label = 0
moves[i].clas = i
i += 1
for label_str in right_labels:
label_str = unicode(label_str)
label_id = self.label_ids.setdefault(label_str, len(self.label_ids))
moves[i].move = BREAK_RIGHT
moves[i].label = label_id
moves[i].clas = i
i += 1
self._moves = moves
cdef int transition(self, State *s, const Transition* t) except -1:
if t.move == SHIFT:
# Set the dep label, in case we need it after we reduce
if NON_MONOTONIC:
get_s0(s).dep = t.label
push_stack(s)
elif t.move == LEFT:
add_dep(s, s.i, s.stack[0], t.label)
pop_stack(s)
elif t.move == RIGHT:
add_dep(s, s.stack[0], s.i, t.label)
push_stack(s)
elif t.move == REDUCE:
add_dep(s, s.stack[-1], s.stack[0], get_s0(s).dep)
pop_stack(s)
elif t.move == BREAK_RIGHT:
add_dep(s, s.stack[0], s.i, t.label)
push_stack(s)
while s.stack_len != 0:
if not has_head(get_s0(s)):
get_s0(s).dep = 0
s.stack -= 1
s.stack_len -= 1
if not at_eol(s):
push_stack(s)
elif t.move == BREAK_SHIFT:
push_stack(s)
get_s0(s).dep = 0
s.stack -= s.stack_len
s.stack_len = 0
if not at_eol(s):
push_stack(s)
else:
raise Exception(t.move)
cdef Transition best_valid(self, const weight_t* scores, const State* s) except *:
cdef bint[N_MOVES] valid
valid[SHIFT] = _can_shift(s)
valid[LEFT] = _can_left(s)
valid[RIGHT] = _can_right(s)
valid[REDUCE] = _can_reduce(s)
valid[BREAK_SHIFT] = _can_break_shift(s)
valid[BREAK_RIGHT] = _can_break_right(s)
cdef int best = -1
cdef weight_t score = 0
cdef weight_t best_r_score = -9000
cdef int best_r_label = -1
cdef int i
for i in range(self.n_moves):
if valid[self._moves[i].move] and (best == -1 or scores[i] > score):
best = i
score = scores[i]
if self._moves[i].move == RIGHT and scores[i] > best_r_score:
best_r_label = self._moves[i].label
assert best >= 0
cdef Transition t = self._moves[best]
t.score = score
if t.move == SHIFT:
t.label = best_r_label
return t
cdef Transition best_gold(self, Transition* guess, const weight_t* scores,
const State* s,
const int* gold_heads, const int* gold_labels) except *:
# If we can create a gold dependency, only one action can be correct
cdef int[N_MOVES] unl_costs
unl_costs[SHIFT] = _shift_cost(s, gold_heads) if _can_shift(s) else -1
unl_costs[LEFT] = _left_cost(s, gold_heads) if _can_left(s) else -1
unl_costs[RIGHT] = _right_cost(s, gold_heads) if _can_right(s) else -1
unl_costs[REDUCE] = _reduce_cost(s, gold_heads) if _can_reduce(s) else -1
unl_costs[BREAK_SHIFT] = _break_shift_cost(s, gold_heads) if _can_break_shift(s) else -1
unl_costs[BREAK_RIGHT] = _break_right_cost(s, gold_heads) if _can_break_right(s) else -1
guess.cost = unl_costs[guess.move]
cdef Transition t
cdef int target_label
cdef int i
if gold_heads[s.stack[0]] == s.i:
target_label = gold_labels[s.stack[0]]
if guess.move == LEFT:
guess.cost += guess.label != target_label
for i in range(self.n_moves):
t = self._moves[i]
if t.move == LEFT and t.label == target_label:
return t
elif gold_heads[s.i] == s.stack[0]:
target_label = gold_labels[s.i]
if guess.move == RIGHT or guess.move == BREAK_RIGHT:
guess.cost += guess.label != target_label
for i in range(self.n_moves):
t = self._moves[i]
if (t.move == RIGHT or t.move == BREAK_RIGHT) and t.label == target_label:
return t
cdef int best = -1
cdef weight_t score = -9000
for i in range(self.n_moves):
t = self._moves[i]
if unl_costs[t.move] == 0 and (best == -1 or scores[i] > score):
best = i
score = scores[i]
t = self._moves[best]
t.score = score
if best < 0:
msg = ("No gold move found for configuration.\n"
"Is the gold-standard parse a projective tree?\n"
"S unl cost: %d\n"
"D unl cost: %d\n"
"L unl cost: %d\n"
"R unl cost: %d\n"
"S0, S0 gold: %d, %d\n"
"N0, N0 gold: %d, %d\n"
)
fields = [unl_costs[SHIFT], unl_costs[REDUCE], unl_costs[LEFT],
unl_costs[RIGHT],
s.stack[0], gold_heads[s.stack[0]],
s.i, gold_heads[s.i]]
raise Exception(msg % tuple(fields))
return t