spaCy/spacy/ml/models/multi_task.py
Sofie Van Landeghem 06f0a8daa0
Default settings to configurations (#4995)
* fix grad_clip naming

* cleaning up pretrained_vectors out of cfg

* further refactoring Model init's

* move Model building out of pipes

* further refactor to require a model config when creating a pipe

* small fixes

* making cfg in nn_parser more consistent

* fixing nr_class for parser

* fixing nn_parser's nO

* fix printing of loss

* architectures in own file per type, consistent naming

* convenience methods default_tagger_config and default_tok2vec_config

* let create_pipe access default config if available for that component

* default_parser_config

* move defaults to separate folder

* allow reading nlp from package or dir with argument 'name'

* architecture spacy.VocabVectors.v1 to read static vectors from file

* cleanup

* default configs for nel, textcat, morphologizer, tensorizer

* fix imports

* fixing unit tests

* fixes and clean up

* fixing defaults, nO, fix unit tests

* restore parser IO

* fix IO

* 'fix' serialization test

* add *.cfg to manifest

* fix example configs with additional arguments

* replace Morpohologizer with Tagger

* add IO bit when testing overfitting of tagger (currently failing)

* fix IO - don't initialize when reading from disk

* expand overfitting tests to also check IO goes OK

* remove dropout from HashEmbed to fix Tagger performance

* add defaults for sentrec

* update thinc

* always pass a Model instance to a Pipe

* fix piped_added statement

* remove obsolete W029

* remove obsolete errors

* restore byte checking tests (work again)

* clean up test

* further test cleanup

* convert from config to Model in create_pipe

* bring back error when component is not initialized

* cleanup

* remove calls for nlp2.begin_training

* use thinc.api in imports

* allow setting charembed's nM and nC

* fix for hardcoded nM/nC + unit test

* formatting fixes

* trigger build
2020-02-27 18:42:27 +01:00

30 lines
1010 B
Python

from thinc.api import chain, Maxout, LayerNorm, Softmax, Linear, zero_init
def build_multi_task_model(n_tags, tok2vec=None, token_vector_width=96):
model = chain(
tok2vec,
Maxout(nO=token_vector_width * 2, nI=token_vector_width, nP=3, dropout=0.0),
LayerNorm(token_vector_width * 2),
Softmax(nO=n_tags, nI=token_vector_width * 2),
)
return model
def build_cloze_multi_task_model(vocab, tok2vec):
output_size = vocab.vectors.data.shape[1]
output_layer = chain(
Maxout(
nO=output_size, nI=tok2vec.get_dim("nO"), nP=3, normalize=True, dropout=0.0
),
Linear(nO=output_size, nI=output_size, init_W=zero_init),
)
model = chain(tok2vec, output_layer)
model = build_masked_language_model(vocab, model)
return model
def build_masked_language_model(*args, **kwargs):
# TODO cf https://github.com/explosion/spaCy/blob/2c107f02a4d60bda2440db0aad1a88cbbf4fb52d/spacy/_ml.py#L828
raise NotImplementedError