mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			55 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from spacy.kb import KnowledgeBase
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.lang.en import English
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("Russ Cochran his reprints include EC Comics.",
 | 
						|
        {"links": {(0, 12): {"Q2146908": 1.0}},
 | 
						|
         "entities": [(0, 12, "PERSON")],
 | 
						|
         "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]})
 | 
						|
]
 | 
						|
# fmt: on
 | 
						|
 | 
						|
 | 
						|
def test_partial_links():
 | 
						|
    # Test that having some entities on the doc without gold links, doesn't crash
 | 
						|
    nlp = English()
 | 
						|
    vector_length = 3
 | 
						|
    train_examples = []
 | 
						|
    for text, annotation in TRAIN_DATA:
 | 
						|
        doc = nlp(text)
 | 
						|
        train_examples.append(Example.from_dict(doc, annotation))
 | 
						|
 | 
						|
    def create_kb(vocab):
 | 
						|
        # create artificial KB
 | 
						|
        mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
 | 
						|
        mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | 
						|
        mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
 | 
						|
        return mykb
 | 
						|
 | 
						|
    # Create and train the Entity Linker
 | 
						|
    entity_linker = nlp.add_pipe("entity_linker", last=True)
 | 
						|
    entity_linker.set_kb(create_kb)
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    for i in range(2):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
    # adding additional components that are required for the entity_linker
 | 
						|
    nlp.add_pipe("sentencizer", first=True)
 | 
						|
    patterns = [
 | 
						|
        {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
 | 
						|
        {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}
 | 
						|
    ]
 | 
						|
    ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
 | 
						|
    ruler.add_patterns(patterns)
 | 
						|
 | 
						|
    # this will run the pipeline on the examples and shouldn't crash
 | 
						|
    results = nlp.evaluate(train_examples)
 | 
						|
    assert "PERSON" in results["ents_per_type"]
 | 
						|
    assert "PERSON" in results["nel_f_per_type"]
 | 
						|
    assert "ORG" in results["ents_per_type"]
 | 
						|
    assert "ORG" not in results["nel_f_per_type"]
 |