mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
from typing import Callable, List, Tuple
|
|
|
|
from thinc.api import Model, to_numpy
|
|
from thinc.types import Ints1d, Ragged
|
|
|
|
from ..util import registry
|
|
|
|
|
|
@registry.layers("spacy.extract_spans.v1")
|
|
def extract_spans() -> Model[Tuple[Ragged, Ragged], Ragged]:
|
|
"""Extract spans from a sequence of source arrays, as specified by an array
|
|
of (start, end) indices. The output is a ragged array of the
|
|
extracted spans.
|
|
"""
|
|
return Model(
|
|
"extract_spans", forward, layers=[], refs={}, attrs={}, dims={}, init=init
|
|
)
|
|
|
|
|
|
def init(model, X=None, Y=None):
|
|
pass
|
|
|
|
|
|
def forward(
|
|
model: Model, source_spans: Tuple[Ragged, Ragged], is_train: bool
|
|
) -> Tuple[Ragged, Callable]:
|
|
"""Get subsequences from source vectors."""
|
|
ops = model.ops
|
|
X, spans = source_spans
|
|
assert spans.dataXd.ndim == 2
|
|
indices = _get_span_indices(ops, spans, X.lengths)
|
|
if len(indices) > 0:
|
|
Y = Ragged(X.dataXd[indices], spans.dataXd[:, 1] - spans.dataXd[:, 0]) # type: ignore[arg-type, index]
|
|
else:
|
|
Y = Ragged(
|
|
ops.xp.zeros(X.dataXd.shape, dtype=X.dataXd.dtype),
|
|
ops.xp.zeros((len(X.lengths),), dtype="i"),
|
|
)
|
|
x_shape = X.dataXd.shape
|
|
x_lengths = X.lengths
|
|
|
|
def backprop_windows(dY: Ragged) -> Tuple[Ragged, Ragged]:
|
|
dX = Ragged(ops.alloc2f(*x_shape), x_lengths)
|
|
ops.scatter_add(dX.dataXd, indices, dY.dataXd) # type: ignore[arg-type]
|
|
return (dX, spans)
|
|
|
|
return Y, backprop_windows
|
|
|
|
|
|
def _get_span_indices(ops, spans: Ragged, lengths: Ints1d) -> Ints1d:
|
|
"""Construct a flat array that has the indices we want to extract from the
|
|
source data. For instance, if we want the spans (5, 9), (8, 10) the
|
|
indices will be [5, 6, 7, 8, 8, 9].
|
|
"""
|
|
spans, lengths = _ensure_cpu(spans, lengths)
|
|
indices: List[int] = []
|
|
offset = 0
|
|
for i, length in enumerate(lengths):
|
|
spans_i = spans[i].dataXd + offset
|
|
for j in range(spans_i.shape[0]):
|
|
indices.extend(range(spans_i[j, 0], spans_i[j, 1])) # type: ignore[arg-type, call-overload]
|
|
offset += length
|
|
return ops.asarray1i(indices)
|
|
|
|
|
|
def _ensure_cpu(spans: Ragged, lengths: Ints1d) -> Tuple[Ragged, Ints1d]:
|
|
return Ragged(to_numpy(spans.dataXd), to_numpy(spans.lengths)), to_numpy(lengths)
|