spaCy/spacy/tests/regression/test_issue3001-3500.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

266 lines
9.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pytest
from spacy import registry
from spacy.lang.en import English
from spacy.lang.de import German
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.pipeline import EntityRuler, EntityRecognizer
from spacy.matcher import Matcher, PhraseMatcher
from spacy.tokens import Doc
from spacy.vocab import Vocab
from spacy.attrs import ENT_IOB, ENT_TYPE
from spacy.compat import pickle
from spacy import displacy
import numpy
from spacy.vectors import Vectors
from ..util import get_doc
def test_issue3002():
"""Test that the tokenizer doesn't hang on a long list of dots"""
nlp = German()
doc = nlp(
"880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl"
)
assert len(doc) == 5
def test_issue3009(en_vocab):
"""Test problem with matcher quantifiers"""
patterns = [
[{"ORTH": "has"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}],
[
{"ORTH": "has"},
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"},
{"LOWER": "to"},
{"LOWER": "do"},
{"TAG": "IN"},
],
[
{"ORTH": "has"},
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"},
{"LOWER": "to"},
{"LOWER": "do"},
{"TAG": "IN"},
],
]
words = ["also", "has", "to", "do", "with"]
tags = ["RB", "VBZ", "TO", "VB", "IN"]
pos = ["ADV", "VERB", "ADP", "VERB", "ADP"]
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos)
matcher = Matcher(en_vocab)
for i, pattern in enumerate(patterns):
matcher.add(str(i), [pattern])
matches = matcher(doc)
assert matches
def test_issue3012(en_vocab):
"""Test that the is_tagged attribute doesn't get overwritten when we from_array
without tag information."""
words = ["This", "is", "10", "%", "."]
tags = ["DT", "VBZ", "CD", "NN", "."]
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
ents = [(2, 4, "PERCENT")]
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
assert doc.is_tagged
expected = ("10", "NUM", "CD", "PERCENT")
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
header = [ENT_IOB, ENT_TYPE]
ent_array = doc.to_array(header)
doc.from_array(header, ent_array)
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
# Serializing then deserializing
doc_bytes = doc.to_bytes()
doc2 = Doc(en_vocab).from_bytes(doc_bytes)
assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected
def test_issue3199():
"""Test that Span.noun_chunks works correctly if no noun chunks iterator
is available. To make this test future-proof, we're constructing a Doc
with a new Vocab here and setting is_parsed to make sure the noun chunks run.
"""
doc = Doc(Vocab(), words=["This", "is", "a", "sentence"])
doc.is_parsed = True
assert list(doc[0:3].noun_chunks) == []
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue3209():
"""Test issue that occurred in spaCy nightly where NER labels were being
mapped to classes incorrectly after loading the model, when the labels
were added using ner.add_label().
"""
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("ANIMAL")
nlp.begin_training()
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
assert ner.move_names == move_names
nlp2 = English()
ner2 = nlp2.add_pipe("ner")
model = ner2.model
model.attrs["resize_output"](model, ner.moves.n_moves)
nlp2.from_bytes(nlp.to_bytes())
assert ner2.move_names == move_names
def test_issue3248_1():
"""Test that the PhraseMatcher correctly reports its number of rules, not
total number of patterns."""
nlp = English()
matcher = PhraseMatcher(nlp.vocab)
matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")])
matcher.add("TEST2", [nlp("d")])
assert len(matcher) == 2
def test_issue3248_2():
"""Test that the PhraseMatcher can be pickled correctly."""
nlp = English()
matcher = PhraseMatcher(nlp.vocab)
matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")])
matcher.add("TEST2", [nlp("d")])
data = pickle.dumps(matcher)
new_matcher = pickle.loads(data)
assert len(new_matcher) == len(matcher)
def test_issue3277(es_tokenizer):
"""Test that hyphens are split correctly as prefixes."""
doc = es_tokenizer("—Yo me llamo... murmuró el niño Emilio Sánchez Pérez.")
assert len(doc) == 14
assert doc[0].text == "\u2014"
assert doc[5].text == "\u2013"
assert doc[9].text == "\u2013"
def test_issue3288(en_vocab):
"""Test that retokenization works correctly via displaCy when punctuation
is merged onto the preceeding token and tensor is resized."""
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
heads = [1, 0, -1, 1, 0, 1, -2, -3]
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
displacy.render(doc)
def test_issue3289():
"""Test that Language.to_bytes handles serializing a pipeline component
with an uninitialized model."""
nlp = English()
nlp.add_pipe("textcat")
bytes_data = nlp.to_bytes()
new_nlp = English()
new_nlp.add_pipe("textcat")
new_nlp.from_bytes(bytes_data)
def test_issue3328(en_vocab):
doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"])
matcher = Matcher(en_vocab)
patterns = [
[{"LOWER": {"IN": ["hello", "how"]}}],
[{"LOWER": {"IN": ["you", "doing"]}}],
]
matcher.add("TEST", patterns)
matches = matcher(doc)
assert len(matches) == 4
matched_texts = [doc[start:end].text for _, start, end in matches]
assert matched_texts == ["Hello", "how", "you", "doing"]
def test_issue3331(en_vocab):
"""Test that duplicate patterns for different rules result in multiple
matches, one per rule.
"""
matcher = PhraseMatcher(en_vocab)
matcher.add("A", [Doc(en_vocab, words=["Barack", "Obama"])])
matcher.add("B", [Doc(en_vocab, words=["Barack", "Obama"])])
doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"])
matches = matcher(doc)
assert len(matches) == 2
match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]]
assert sorted(match_ids) == ["A", "B"]
def test_issue3345():
"""Test case where preset entity crosses sentence boundary."""
nlp = English()
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
doc[4].is_sent_start = True
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
model = registry.make_from_config({"model": DEFAULT_NER_MODEL}, validate=True)["model"]
ner = EntityRecognizer(doc.vocab, model, **config)
# Add the OUT action. I wouldn't have thought this would be necessary...
ner.moves.add_action(5, "")
ner.add_label("GPE")
doc = ruler(doc)
# Get into the state just before "New"
state = ner.moves.init_batch([doc])[0]
ner.moves.apply_transition(state, "O")
ner.moves.apply_transition(state, "O")
ner.moves.apply_transition(state, "O")
# Check that B-GPE is valid.
assert ner.moves.is_valid(state, "B-GPE")
def test_issue3412():
data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f")
vectors = Vectors(data=data, keys=["A", "B", "C"])
keys, best_rows, scores = vectors.most_similar(
numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f")
)
assert best_rows[0] == 2
@pytest.mark.skip(reason="default suffix rules avoid one upper-case letter before dot")
def test_issue3449():
nlp = English()
nlp.add_pipe("sentencizer")
text1 = "He gave the ball to I. Do you want to go to the movies with I?"
text2 = "He gave the ball to I. Do you want to go to the movies with I?"
text3 = "He gave the ball to I.\nDo you want to go to the movies with I?"
t1 = nlp(text1)
t2 = nlp(text2)
t3 = nlp(text3)
assert t1[5].text == "I"
assert t2[5].text == "I"
assert t3[5].text == "I"
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue3456():
# this crashed because of a padding error in layer.ops.unflatten in thinc
nlp = English()
nlp.add_pipe("tagger")
nlp.begin_training()
list(nlp.pipe(["hi", ""]))
def test_issue3468():
"""Test that sentence boundaries are set correctly so Doc.is_sentenced can
be restored after serialization."""
nlp = English()
nlp.add_pipe("sentencizer")
doc = nlp("Hello world")
assert doc[0].is_sent_start
assert doc.is_sentenced
assert len(list(doc.sents)) == 1
doc_bytes = doc.to_bytes()
new_doc = Doc(nlp.vocab).from_bytes(doc_bytes)
assert new_doc[0].is_sent_start
assert new_doc.is_sentenced
assert len(list(new_doc.sents)) == 1