mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 09:26:27 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
160 lines
4.5 KiB
Python
160 lines
4.5 KiB
Python
import pytest
|
|
import os
|
|
import ctypes
|
|
from pathlib import Path
|
|
from spacy.about import __version__ as spacy_version
|
|
from spacy import util
|
|
from spacy import prefer_gpu, require_gpu
|
|
from spacy.ml._precomputable_affine import PrecomputableAffine
|
|
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
|
|
|
|
|
|
@pytest.fixture
|
|
def is_admin():
|
|
"""Determine if the tests are run as admin or not."""
|
|
try:
|
|
admin = os.getuid() == 0
|
|
except AttributeError:
|
|
admin = ctypes.windll.shell32.IsUserAnAdmin() != 0
|
|
|
|
return admin
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["hello/world", "hello world"])
|
|
def test_util_ensure_path_succeeds(text):
|
|
path = util.ensure_path(text)
|
|
assert isinstance(path, Path)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"package,result", [("numpy", True), ("sfkodskfosdkfpsdpofkspdof", False)]
|
|
)
|
|
def test_util_is_package(package, result):
|
|
"""Test that an installed package via pip is recognised by util.is_package."""
|
|
assert util.is_package(package) is result
|
|
|
|
|
|
@pytest.mark.parametrize("package", ["thinc"])
|
|
def test_util_get_package_path(package):
|
|
"""Test that a Path object is returned for a package name."""
|
|
path = util.get_package_path(package)
|
|
assert isinstance(path, Path)
|
|
|
|
|
|
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
|
|
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP).initialize()
|
|
assert model.get_param("W").shape == (nF, nO, nP, nI)
|
|
tensor = model.ops.alloc((10, nI))
|
|
Y, get_dX = model.begin_update(tensor)
|
|
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
|
|
dY = model.ops.alloc((15, nO, nP))
|
|
ids = model.ops.alloc((15, nF))
|
|
ids[1, 2] = -1
|
|
dY[1] = 1
|
|
assert not model.has_grad("pad")
|
|
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
|
|
assert d_pad[0, 2, 0, 0] == 1.0
|
|
ids.fill(0.0)
|
|
dY.fill(0.0)
|
|
dY[0] = 0
|
|
ids[1, 2] = 0
|
|
ids[1, 1] = -1
|
|
ids[1, 0] = -1
|
|
dY[1] = 1
|
|
ids[2, 0] = -1
|
|
dY[2] = 5
|
|
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
|
|
assert d_pad[0, 0, 0, 0] == 6
|
|
assert d_pad[0, 1, 0, 0] == 1
|
|
assert d_pad[0, 2, 0, 0] == 0
|
|
|
|
|
|
def test_prefer_gpu():
|
|
try:
|
|
import cupy # noqa: F401
|
|
except ImportError:
|
|
assert not prefer_gpu()
|
|
|
|
|
|
def test_require_gpu():
|
|
try:
|
|
import cupy # noqa: F401
|
|
except ImportError:
|
|
with pytest.raises(ValueError):
|
|
require_gpu()
|
|
|
|
|
|
def test_ascii_filenames():
|
|
"""Test that all filenames in the project are ASCII.
|
|
See: https://twitter.com/_inesmontani/status/1177941471632211968
|
|
"""
|
|
root = Path(__file__).parent.parent
|
|
for path in root.glob("**/*"):
|
|
assert all(ord(c) < 128 for c in path.name), path.name
|
|
|
|
|
|
def test_load_model_blank_shortcut():
|
|
"""Test that using a model name like "blank:en" works as a shortcut for
|
|
spacy.blank("en").
|
|
"""
|
|
nlp = util.load_model("blank:en")
|
|
assert nlp.lang == "en"
|
|
assert nlp.pipeline == []
|
|
with pytest.raises(ImportError):
|
|
util.load_model("blank:fjsfijsdof")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"version,constraint,compatible",
|
|
[
|
|
(spacy_version, spacy_version, True),
|
|
(spacy_version, f">={spacy_version}", True),
|
|
("3.0.0", "2.0.0", False),
|
|
("3.2.1", ">=2.0.0", True),
|
|
("2.2.10a1", ">=1.0.0,<2.1.1", False),
|
|
("3.0.0.dev3", ">=1.2.3,<4.5.6", True),
|
|
("n/a", ">=1.2.3,<4.5.6", None),
|
|
("1.2.3", "n/a", None),
|
|
("n/a", "n/a", None),
|
|
],
|
|
)
|
|
def test_is_compatible_version(version, constraint, compatible):
|
|
assert util.is_compatible_version(version, constraint) is compatible
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"constraint,expected",
|
|
[
|
|
("3.0.0", False),
|
|
("==3.0.0", False),
|
|
(">=2.3.0", True),
|
|
(">2.0.0", True),
|
|
("<=2.0.0", True),
|
|
(">2.0.0,<3.0.0", False),
|
|
(">=2.0.0,<3.0.0", False),
|
|
("!=1.1,>=1.0,~=1.0", True),
|
|
("n/a", None),
|
|
],
|
|
)
|
|
def test_is_unconstrained_version(constraint, expected):
|
|
assert util.is_unconstrained_version(constraint) is expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dot_notation,expected",
|
|
[
|
|
(
|
|
{"token.pos": True, "token._.xyz": True},
|
|
{"token": {"pos": True, "_": {"xyz": True}}},
|
|
),
|
|
(
|
|
{"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
|
|
{"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
|
|
),
|
|
],
|
|
)
|
|
def test_dot_to_dict(dot_notation, expected):
|
|
result = util.dot_to_dict(dot_notation)
|
|
assert result == expected
|
|
assert util.dict_to_dot(result) == dot_notation
|