mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 11:26:28 +03:00
1ea31552be
# Conflicts: # requirements.txt # spacy/pipeline/entity_linker.py # spacy/util.py # website/docs/api/entitylinker.mdx
1164 lines
48 KiB
Cython
1164 lines
48 KiB
Cython
# cython: binding=True, infer_types=True, profile=True
|
|
from typing import List, Iterable
|
|
|
|
from libcpp.vector cimport vector
|
|
from libc.stdint cimport int32_t, int8_t
|
|
from libc.string cimport memset, memcmp
|
|
from cymem.cymem cimport Pool
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
import re
|
|
import srsly
|
|
import warnings
|
|
|
|
from ..typedefs cimport attr_t
|
|
from ..structs cimport TokenC
|
|
from ..vocab cimport Vocab
|
|
from ..tokens.doc cimport Doc, get_token_attr_for_matcher
|
|
from ..tokens.span cimport Span
|
|
from ..tokens.token cimport Token
|
|
from ..tokens.morphanalysis cimport MorphAnalysis
|
|
from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA, MORPH, ENT_IOB
|
|
|
|
from .levenshtein import levenshtein_compare
|
|
from ..schemas import validate_token_pattern
|
|
from ..errors import Errors, MatchPatternError, Warnings
|
|
from ..strings cimport get_string_id
|
|
from ..attrs import IDS
|
|
from ..util import registry
|
|
|
|
|
|
DEF PADDING = 5
|
|
|
|
|
|
cdef class Matcher:
|
|
"""Match sequences of tokens, based on pattern rules.
|
|
|
|
DOCS: https://spacy.io/api/matcher
|
|
USAGE: https://spacy.io/usage/rule-based-matching
|
|
"""
|
|
|
|
def __init__(self, vocab, validate=True, *, fuzzy_compare=levenshtein_compare):
|
|
"""Create the Matcher.
|
|
|
|
vocab (Vocab): The vocabulary object, which must be shared with the
|
|
validate (bool): Validate all patterns added to this matcher.
|
|
fuzzy_compare (Callable[[str, str, int], bool]): The comparison method
|
|
for the FUZZY operators.
|
|
"""
|
|
self._extra_predicates = []
|
|
self._patterns = {}
|
|
self._callbacks = {}
|
|
self._filter = {}
|
|
self._extensions = {}
|
|
self._seen_attrs = set()
|
|
self.vocab = vocab
|
|
self.mem = Pool()
|
|
self.validate = validate
|
|
self._fuzzy_compare = fuzzy_compare
|
|
|
|
def __reduce__(self):
|
|
data = (self.vocab, self._patterns, self._callbacks, self.validate, self._fuzzy_compare)
|
|
return (unpickle_matcher, data, None, None)
|
|
|
|
def __len__(self):
|
|
"""Get the number of rules added to the matcher. Note that this only
|
|
returns the number of rules (identical with the number of IDs), not the
|
|
number of individual patterns.
|
|
|
|
RETURNS (int): The number of rules.
|
|
"""
|
|
return len(self._patterns)
|
|
|
|
def __contains__(self, key):
|
|
"""Check whether the matcher contains rules for a match ID.
|
|
|
|
key (str): The match ID.
|
|
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
|
"""
|
|
return self.has_key(key)
|
|
|
|
def add(self, key, patterns, *, on_match=None, greedy: str=None):
|
|
"""Add a match-rule to the matcher. A match-rule consists of: an ID
|
|
key, an on_match callback, and one or more patterns.
|
|
|
|
If the key exists, the patterns are appended to the previous ones, and
|
|
the previous on_match callback is replaced. The `on_match` callback
|
|
will receive the arguments `(matcher, doc, i, matches)`. You can also
|
|
set `on_match` to `None` to not perform any actions.
|
|
|
|
A pattern consists of one or more `token_specs`, where a `token_spec`
|
|
is a dictionary mapping attribute IDs to values, and optionally a
|
|
quantifier operator under the key "op". The available quantifiers are:
|
|
|
|
'!': Negate the pattern, by requiring it to match exactly 0 times.
|
|
'?': Make the pattern optional, by allowing it to match 0 or 1 times.
|
|
'+': Require the pattern to match 1 or more times.
|
|
'*': Allow the pattern to zero or more times.
|
|
'{n}': Require the pattern to match exactly _n_ times.
|
|
'{n,m}': Require the pattern to match at least _n_ but not more than _m_ times.
|
|
'{n,}': Require the pattern to match at least _n_ times.
|
|
'{,m}': Require the pattern to match at most _m_ times.
|
|
|
|
The + and * operators return all possible matches (not just the greedy
|
|
ones). However, the "greedy" argument can filter the final matches
|
|
by returning a non-overlapping set per key, either taking preference to
|
|
the first greedy match ("FIRST"), or the longest ("LONGEST").
|
|
|
|
Since spaCy v2.2.2, Matcher.add takes a list of patterns as the second
|
|
argument, and the on_match callback is an optional keyword argument.
|
|
|
|
key (Union[str, int]): The match ID.
|
|
patterns (list): The patterns to add for the given key.
|
|
on_match (callable): Optional callback executed on match.
|
|
greedy (str): Optional filter: "FIRST" or "LONGEST".
|
|
"""
|
|
errors = {}
|
|
if on_match is not None and not hasattr(on_match, "__call__"):
|
|
raise ValueError(Errors.E171.format(name="Matcher", arg_type=type(on_match)))
|
|
if patterns is None or not isinstance(patterns, List):
|
|
raise ValueError(Errors.E948.format(name="Matcher", arg_type=type(patterns)))
|
|
if greedy is not None and greedy not in ["FIRST", "LONGEST"]:
|
|
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=greedy))
|
|
for i, pattern in enumerate(patterns):
|
|
if len(pattern) == 0:
|
|
raise ValueError(Errors.E012.format(key=key))
|
|
if not isinstance(pattern, list):
|
|
raise ValueError(Errors.E178.format(pat=pattern, key=key))
|
|
if self.validate:
|
|
errors[i] = validate_token_pattern(pattern)
|
|
if any(err for err in errors.values()):
|
|
raise MatchPatternError(key, errors)
|
|
key = self._normalize_key(key)
|
|
for pattern in patterns:
|
|
try:
|
|
specs = _preprocess_pattern(pattern, self.vocab,
|
|
self._extensions, self._extra_predicates, self._fuzzy_compare)
|
|
self.patterns.push_back(init_pattern(self.mem, key, specs))
|
|
for spec in specs:
|
|
for attr, _ in spec[1]:
|
|
self._seen_attrs.add(attr)
|
|
except OverflowError, AttributeError:
|
|
raise ValueError(Errors.E154.format()) from None
|
|
self._patterns.setdefault(key, [])
|
|
self._callbacks[key] = on_match
|
|
self._filter[key] = greedy
|
|
self._patterns[key].extend(patterns)
|
|
|
|
def _require_patterns(self) -> None:
|
|
"""Raise a warning if this component has no patterns defined."""
|
|
if len(self) == 0:
|
|
warnings.warn(Warnings.W036.format(name="matcher"))
|
|
|
|
def remove(self, key):
|
|
"""Remove a rule from the matcher. A KeyError is raised if the key does
|
|
not exist.
|
|
|
|
key (str): The ID of the match rule.
|
|
"""
|
|
norm_key = self._normalize_key(key)
|
|
if not norm_key in self._patterns:
|
|
raise ValueError(Errors.E175.format(key=key))
|
|
self._patterns.pop(norm_key)
|
|
self._callbacks.pop(norm_key)
|
|
cdef int i = 0
|
|
while i < self.patterns.size():
|
|
pattern_key = get_ent_id(self.patterns.at(i))
|
|
if pattern_key == norm_key:
|
|
self.patterns.erase(self.patterns.begin()+i)
|
|
else:
|
|
i += 1
|
|
|
|
def has_key(self, key):
|
|
"""Check whether the matcher has a rule with a given key.
|
|
|
|
key (string or int): The key to check.
|
|
RETURNS (bool): Whether the matcher has the rule.
|
|
"""
|
|
return self._normalize_key(key) in self._patterns
|
|
|
|
def get(self, key, default=None):
|
|
"""Retrieve the pattern stored for a key.
|
|
|
|
key (str / int): The key to retrieve.
|
|
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
|
|
"""
|
|
key = self._normalize_key(key)
|
|
if key not in self._patterns:
|
|
return default
|
|
return (self._callbacks[key], self._patterns[key])
|
|
|
|
def pipe(self, docs, batch_size=1000, return_matches=False, as_tuples=False):
|
|
"""Match a stream of documents, yielding them in turn. Deprecated as of
|
|
spaCy v3.0.
|
|
"""
|
|
warnings.warn(Warnings.W105.format(matcher="Matcher"), DeprecationWarning)
|
|
if as_tuples:
|
|
for doc, context in docs:
|
|
matches = self(doc)
|
|
if return_matches:
|
|
yield ((doc, matches), context)
|
|
else:
|
|
yield (doc, context)
|
|
else:
|
|
for doc in docs:
|
|
matches = self(doc)
|
|
if return_matches:
|
|
yield (doc, matches)
|
|
else:
|
|
yield doc
|
|
|
|
def __call__(self, object doclike, *, as_spans=False, allow_missing=False, with_alignments=False):
|
|
"""Find all token sequences matching the supplied pattern.
|
|
|
|
doclike (Doc or Span): The document to match over.
|
|
as_spans (bool): Return Span objects with labels instead of (match_id,
|
|
start, end) tuples.
|
|
allow_missing (bool): Whether to skip checks for missing annotation for
|
|
attributes included in patterns. Defaults to False.
|
|
with_alignments (bool): Return match alignment information, which is
|
|
`List[int]` with length of matched span. Each entry denotes the
|
|
corresponding index of token pattern. If as_spans is set to True,
|
|
this setting is ignored.
|
|
RETURNS (list): A list of `(match_id, start, end)` tuples,
|
|
describing the matches. A match tuple describes a span
|
|
`doc[start:end]`. The `match_id` is an integer. If as_spans is set
|
|
to True, a list of Span objects is returned.
|
|
If with_alignments is set to True and as_spans is set to False,
|
|
A list of `(match_id, start, end, alignments)` tuples is returned.
|
|
"""
|
|
self._require_patterns()
|
|
if isinstance(doclike, Doc):
|
|
doc = doclike
|
|
length = len(doc)
|
|
elif isinstance(doclike, Span):
|
|
doc = doclike.doc
|
|
length = doclike.end - doclike.start
|
|
else:
|
|
raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doclike).__name__))
|
|
# Skip alignments calculations if as_spans is set
|
|
if as_spans:
|
|
with_alignments = False
|
|
cdef Pool tmp_pool = Pool()
|
|
if not allow_missing:
|
|
for attr in (TAG, POS, MORPH, LEMMA, DEP):
|
|
if attr in self._seen_attrs and not doc.has_annotation(attr):
|
|
if attr == TAG:
|
|
pipe = "tagger"
|
|
elif attr in (POS, MORPH):
|
|
pipe = "morphologizer or tagger+attribute_ruler"
|
|
elif attr == LEMMA:
|
|
pipe = "lemmatizer"
|
|
elif attr == DEP:
|
|
pipe = "parser"
|
|
error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr))
|
|
raise ValueError(error_msg)
|
|
|
|
if self.patterns.empty():
|
|
matches = []
|
|
else:
|
|
matches = find_matches(&self.patterns[0], self.patterns.size(), doclike, length,
|
|
extensions=self._extensions, predicates=self._extra_predicates, with_alignments=with_alignments)
|
|
final_matches = []
|
|
pairs_by_id = {}
|
|
# For each key, either add all matches, or only the filtered,
|
|
# non-overlapping ones this `match` can be either (start, end) or
|
|
# (start, end, alignments) depending on `with_alignments=` option.
|
|
for key, *match in matches:
|
|
# Adjust span matches to doc offsets
|
|
if isinstance(doclike, Span):
|
|
match[0] += doclike.start
|
|
match[1] += doclike.start
|
|
span_filter = self._filter.get(key)
|
|
if span_filter is not None:
|
|
pairs = pairs_by_id.get(key, [])
|
|
pairs.append(match)
|
|
pairs_by_id[key] = pairs
|
|
else:
|
|
final_matches.append((key, *match))
|
|
matched = <char*>tmp_pool.alloc(length, sizeof(char))
|
|
empty = <char*>tmp_pool.alloc(length, sizeof(char))
|
|
for key, pairs in pairs_by_id.items():
|
|
memset(matched, 0, length * sizeof(matched[0]))
|
|
span_filter = self._filter.get(key)
|
|
if span_filter == "FIRST":
|
|
sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start
|
|
elif span_filter == "LONGEST":
|
|
sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length
|
|
else:
|
|
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=span_filter))
|
|
for match in sorted_pairs:
|
|
start, end = match[:2]
|
|
assert 0 <= start < end # Defend against segfaults
|
|
span_len = end-start
|
|
# If no tokens in the span have matched
|
|
if memcmp(&matched[start], &empty[start], span_len * sizeof(matched[0])) == 0:
|
|
final_matches.append((key, *match))
|
|
# Mark tokens that have matched
|
|
memset(&matched[start], 1, span_len * sizeof(matched[0]))
|
|
if as_spans:
|
|
final_results = []
|
|
for key, start, end, *_ in final_matches:
|
|
final_results.append(Span(doc, start, end, label=key))
|
|
elif with_alignments:
|
|
# convert alignments List[Dict[str, int]] --> List[int]
|
|
# when multiple alignment (belongs to the same length) is found,
|
|
# keeps the alignment that has largest token_idx
|
|
final_results = []
|
|
for key, start, end, alignments in final_matches:
|
|
sorted_alignments = sorted(alignments, key=lambda x: (x['length'], x['token_idx']), reverse=False)
|
|
alignments = [0] * (end-start)
|
|
for align in sorted_alignments:
|
|
if align['length'] >= end-start:
|
|
continue
|
|
# Since alignments are sorted in order of (length, token_idx)
|
|
# this overwrites smaller token_idx when they have same length.
|
|
alignments[align['length']] = align['token_idx']
|
|
final_results.append((key, start, end, alignments))
|
|
final_matches = final_results # for callbacks
|
|
else:
|
|
final_results = final_matches
|
|
# perform the callbacks on the filtered set of results
|
|
for i, (key, *_) in enumerate(final_matches):
|
|
on_match = self._callbacks.get(key, None)
|
|
if on_match is not None:
|
|
on_match(self, doc, i, final_matches)
|
|
return final_results
|
|
|
|
def _normalize_key(self, key):
|
|
if isinstance(key, str):
|
|
return self.vocab.strings.add(key)
|
|
else:
|
|
return key
|
|
|
|
|
|
def unpickle_matcher(vocab, patterns, callbacks, validate, fuzzy_compare):
|
|
matcher = Matcher(vocab, validate=validate, fuzzy_compare=fuzzy_compare)
|
|
for key, pattern in patterns.items():
|
|
callback = callbacks.get(key, None)
|
|
matcher.add(key, pattern, on_match=callback)
|
|
return matcher
|
|
|
|
|
|
cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, extensions=None, predicates=tuple(), bint with_alignments=0):
|
|
"""Find matches in a doc, with a compiled array of patterns. Matches are
|
|
returned as a list of (id, start, end) tuples or (id, start, end, alignments) tuples (if with_alignments != 0)
|
|
|
|
To augment the compiled patterns, we optionally also take two Python lists.
|
|
|
|
The "predicates" list contains functions that take a Python list and return a
|
|
boolean value. It's mostly used for regular expressions.
|
|
|
|
The "extensions" list contains functions that take a Python list and return
|
|
an attr ID. It's mostly used for extension attributes.
|
|
"""
|
|
cdef vector[PatternStateC] states
|
|
cdef vector[MatchC] matches
|
|
cdef vector[vector[MatchAlignmentC]] align_states
|
|
cdef vector[vector[MatchAlignmentC]] align_matches
|
|
cdef PatternStateC state
|
|
cdef int i, j, nr_extra_attr
|
|
cdef Pool mem = Pool()
|
|
output = []
|
|
if length == 0:
|
|
# avoid any processing or mem alloc if the document is empty
|
|
return output
|
|
if len(predicates) > 0:
|
|
predicate_cache = <int8_t*>mem.alloc(length * len(predicates), sizeof(int8_t))
|
|
if extensions is not None and len(extensions) >= 1:
|
|
nr_extra_attr = max(extensions.values()) + 1
|
|
extra_attr_values = <attr_t*>mem.alloc(length * nr_extra_attr, sizeof(attr_t))
|
|
else:
|
|
nr_extra_attr = 0
|
|
extra_attr_values = <attr_t*>mem.alloc(length, sizeof(attr_t))
|
|
for i, token in enumerate(doclike):
|
|
for name, index in extensions.items():
|
|
value = token._.get(name)
|
|
if isinstance(value, str):
|
|
value = token.vocab.strings[value]
|
|
extra_attr_values[i * nr_extra_attr + index] = value
|
|
# Main loop
|
|
cdef int nr_predicate = len(predicates)
|
|
for i in range(length):
|
|
for j in range(n):
|
|
states.push_back(PatternStateC(patterns[j], i, 0))
|
|
if with_alignments != 0:
|
|
align_states.resize(states.size())
|
|
transition_states(states, matches, align_states, align_matches, predicate_cache,
|
|
doclike[i], extra_attr_values, predicates, with_alignments)
|
|
extra_attr_values += nr_extra_attr
|
|
predicate_cache += len(predicates)
|
|
# Handle matches that end in 0-width patterns
|
|
finish_states(matches, states, align_matches, align_states, with_alignments)
|
|
seen = set()
|
|
for i in range(matches.size()):
|
|
match = (
|
|
matches[i].pattern_id,
|
|
matches[i].start,
|
|
matches[i].start+matches[i].length
|
|
)
|
|
# We need to deduplicate, because we could otherwise arrive at the same
|
|
# match through two paths, e.g. .?.? matching 'a'. Are we matching the
|
|
# first .?, or the second .? -- it doesn't matter, it's just one match.
|
|
# Skip 0-length matches. (TODO: fix algorithm)
|
|
if match not in seen and matches[i].length > 0:
|
|
if with_alignments != 0:
|
|
# since the length of align_matches equals to that of match, we can share same 'i'
|
|
output.append(match + (align_matches[i],))
|
|
else:
|
|
output.append(match)
|
|
seen.add(match)
|
|
return output
|
|
|
|
|
|
cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& matches,
|
|
vector[vector[MatchAlignmentC]]& align_states, vector[vector[MatchAlignmentC]]& align_matches,
|
|
int8_t* cached_py_predicates,
|
|
Token token, const attr_t* extra_attrs, py_predicates, bint with_alignments) except *:
|
|
cdef int q = 0
|
|
cdef vector[PatternStateC] new_states
|
|
cdef vector[vector[MatchAlignmentC]] align_new_states
|
|
cdef int nr_predicate = len(py_predicates)
|
|
for i in range(states.size()):
|
|
if states[i].pattern.nr_py >= 1:
|
|
update_predicate_cache(cached_py_predicates,
|
|
states[i].pattern, token, py_predicates)
|
|
action = get_action(states[i], token.c, extra_attrs,
|
|
cached_py_predicates)
|
|
if action == REJECT:
|
|
continue
|
|
# Keep only a subset of states (the active ones). Index q is the
|
|
# states which are still alive. If we reject a state, we overwrite
|
|
# it in the states list, because q doesn't advance.
|
|
state = states[i]
|
|
states[q] = state
|
|
# Separate from states, performance is guaranteed for users who only need basic options (without alignments).
|
|
# `align_states` always corresponds to `states` 1:1.
|
|
if with_alignments != 0:
|
|
align_state = align_states[i]
|
|
align_states[q] = align_state
|
|
while action in (RETRY, RETRY_ADVANCE, RETRY_EXTEND):
|
|
# Update alignment before the transition of current state
|
|
# 'MatchAlignmentC' maps 'original token index of current pattern' to 'current matching length'
|
|
if with_alignments != 0:
|
|
align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length))
|
|
if action == RETRY_EXTEND:
|
|
# This handles the 'extend'
|
|
new_states.push_back(
|
|
PatternStateC(pattern=states[q].pattern, start=state.start,
|
|
length=state.length+1))
|
|
if with_alignments != 0:
|
|
align_new_states.push_back(align_states[q])
|
|
if action == RETRY_ADVANCE:
|
|
# This handles the 'advance'
|
|
new_states.push_back(
|
|
PatternStateC(pattern=states[q].pattern+1, start=state.start,
|
|
length=state.length+1))
|
|
if with_alignments != 0:
|
|
align_new_states.push_back(align_states[q])
|
|
states[q].pattern += 1
|
|
if states[q].pattern.nr_py != 0:
|
|
update_predicate_cache(cached_py_predicates,
|
|
states[q].pattern, token, py_predicates)
|
|
action = get_action(states[q], token.c, extra_attrs,
|
|
cached_py_predicates)
|
|
# Update alignment before the transition of current state
|
|
if with_alignments != 0:
|
|
align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length))
|
|
if action == REJECT:
|
|
pass
|
|
elif action == ADVANCE:
|
|
states[q].pattern += 1
|
|
states[q].length += 1
|
|
q += 1
|
|
else:
|
|
ent_id = get_ent_id(state.pattern)
|
|
if action == MATCH:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length+1))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
elif action == MATCH_DOUBLE:
|
|
# push match without last token if length > 0
|
|
if state.length > 0:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length))
|
|
# MATCH_DOUBLE emits matches twice,
|
|
# add one more to align_matches in order to keep 1:1 relationship
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
# push match with last token
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length+1))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
elif action == MATCH_REJECT:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
elif action == MATCH_EXTEND:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
states[q].length += 1
|
|
q += 1
|
|
states.resize(q)
|
|
for i in range(new_states.size()):
|
|
states.push_back(new_states[i])
|
|
# `align_states` always corresponds to `states` 1:1
|
|
if with_alignments != 0:
|
|
align_states.resize(q)
|
|
for i in range(align_new_states.size()):
|
|
align_states.push_back(align_new_states[i])
|
|
|
|
|
|
cdef int update_predicate_cache(int8_t* cache,
|
|
const TokenPatternC* pattern, Token token, predicates) except -1:
|
|
# If the state references any extra predicates, check whether they match.
|
|
# These are cached, so that we don't call these potentially expensive
|
|
# Python functions more than we need to.
|
|
for i in range(pattern.nr_py):
|
|
index = pattern.py_predicates[i]
|
|
if cache[index] == 0:
|
|
predicate = predicates[index]
|
|
result = predicate(token)
|
|
if result is True:
|
|
cache[index] = 1
|
|
elif result is False:
|
|
cache[index] = -1
|
|
elif result is None:
|
|
pass
|
|
else:
|
|
raise ValueError(Errors.E125.format(value=result))
|
|
|
|
|
|
cdef void finish_states(vector[MatchC]& matches, vector[PatternStateC]& states,
|
|
vector[vector[MatchAlignmentC]]& align_matches,
|
|
vector[vector[MatchAlignmentC]]& align_states,
|
|
bint with_alignments) except *:
|
|
"""Handle states that end in zero-width patterns."""
|
|
cdef PatternStateC state
|
|
cdef vector[MatchAlignmentC] align_state
|
|
for i in range(states.size()):
|
|
state = states[i]
|
|
if with_alignments != 0:
|
|
align_state = align_states[i]
|
|
while get_quantifier(state) in (ZERO_PLUS, ZERO_ONE):
|
|
# Update alignment before the transition of current state
|
|
if with_alignments != 0:
|
|
align_state.push_back(MatchAlignmentC(state.pattern.token_idx, state.length))
|
|
is_final = get_is_final(state)
|
|
if is_final:
|
|
ent_id = get_ent_id(state.pattern)
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_state)
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start, length=state.length))
|
|
break
|
|
else:
|
|
state.pattern += 1
|
|
|
|
|
|
cdef action_t get_action(PatternStateC state,
|
|
const TokenC* token, const attr_t* extra_attrs,
|
|
const int8_t* predicate_matches) nogil:
|
|
"""We need to consider:
|
|
a) Does the token match the specification? [Yes, No]
|
|
b) What's the quantifier? [1, 0+, ?]
|
|
c) Is this the last specification? [final, non-final]
|
|
|
|
We can transition in the following ways:
|
|
a) Do we emit a match?
|
|
b) Do we add a state with (next state, next token)?
|
|
c) Do we add a state with (next state, same token)?
|
|
d) Do we add a state with (same state, next token)?
|
|
|
|
We'll code the actions as boolean strings, so 0000 means no to all 4,
|
|
1000 means match but no states added, etc.
|
|
|
|
1:
|
|
Yes, final:
|
|
1000
|
|
Yes, non-final:
|
|
0100
|
|
No, final:
|
|
0000
|
|
No, non-final
|
|
0000
|
|
0+:
|
|
Yes, final:
|
|
1001
|
|
Yes, non-final:
|
|
0011
|
|
No, final:
|
|
1000 (note: Don't include last token!)
|
|
No, non-final:
|
|
0010
|
|
?:
|
|
Yes, final:
|
|
1000
|
|
Yes, non-final:
|
|
0100
|
|
No, final:
|
|
1000 (note: Don't include last token!)
|
|
No, non-final:
|
|
0010
|
|
|
|
Possible combinations: 1000, 0100, 0000, 1001, 0110, 0011, 0010,
|
|
|
|
We'll name the bits "match", "advance", "retry", "extend"
|
|
REJECT = 0000
|
|
MATCH = 1000
|
|
ADVANCE = 0100
|
|
RETRY = 0010
|
|
MATCH_EXTEND = 1001
|
|
RETRY_ADVANCE = 0110
|
|
RETRY_EXTEND = 0011
|
|
MATCH_REJECT = 2000 # Match, but don't include last token
|
|
MATCH_DOUBLE = 3000 # Match both with and without last token
|
|
|
|
Problem: If a quantifier is matching, we're adding a lot of open partials
|
|
"""
|
|
cdef int8_t is_match
|
|
is_match = get_is_match(state, token, extra_attrs, predicate_matches)
|
|
quantifier = get_quantifier(state)
|
|
is_final = get_is_final(state)
|
|
if quantifier == ZERO:
|
|
is_match = not is_match
|
|
quantifier = ONE
|
|
if quantifier == ONE:
|
|
if is_match and is_final:
|
|
# Yes, final: 1000
|
|
return MATCH
|
|
elif is_match and not is_final:
|
|
# Yes, non-final: 0100
|
|
return ADVANCE
|
|
elif not is_match and is_final:
|
|
# No, final: 0000
|
|
return REJECT
|
|
else:
|
|
return REJECT
|
|
elif quantifier == ZERO_PLUS:
|
|
if is_match and is_final:
|
|
# Yes, final: 1001
|
|
return MATCH_EXTEND
|
|
elif is_match and not is_final:
|
|
# Yes, non-final: 0011
|
|
return RETRY_EXTEND
|
|
elif not is_match and is_final:
|
|
# No, final 2000 (note: Don't include last token!)
|
|
return MATCH_REJECT
|
|
else:
|
|
# No, non-final 0010
|
|
return RETRY
|
|
elif quantifier == ZERO_ONE:
|
|
if is_match and is_final:
|
|
# Yes, final: 3000
|
|
# To cater for a pattern ending in "?", we need to add
|
|
# a match both with and without the last token
|
|
return MATCH_DOUBLE
|
|
elif is_match and not is_final:
|
|
# Yes, non-final: 0110
|
|
# We need both branches here, consider a pair like:
|
|
# pattern: .?b string: b
|
|
# If we 'ADVANCE' on the .?, we miss the match.
|
|
return RETRY_ADVANCE
|
|
elif not is_match and is_final:
|
|
# No, final 2000 (note: Don't include last token!)
|
|
return MATCH_REJECT
|
|
else:
|
|
# No, non-final 0010
|
|
return RETRY
|
|
|
|
|
|
cdef int8_t get_is_match(PatternStateC state,
|
|
const TokenC* token, const attr_t* extra_attrs,
|
|
const int8_t* predicate_matches) nogil:
|
|
for i in range(state.pattern.nr_py):
|
|
if predicate_matches[state.pattern.py_predicates[i]] == -1:
|
|
return 0
|
|
spec = state.pattern
|
|
if spec.nr_attr > 0:
|
|
for attr in spec.attrs[:spec.nr_attr]:
|
|
if get_token_attr_for_matcher(token, attr.attr) != attr.value:
|
|
return 0
|
|
for i in range(spec.nr_extra_attr):
|
|
if spec.extra_attrs[i].value != extra_attrs[spec.extra_attrs[i].index]:
|
|
return 0
|
|
return True
|
|
|
|
|
|
cdef inline int8_t get_is_final(PatternStateC state) nogil:
|
|
if state.pattern[1].quantifier == FINAL_ID:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
|
|
cdef inline int8_t get_quantifier(PatternStateC state) nogil:
|
|
return state.pattern.quantifier
|
|
|
|
|
|
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs) except NULL:
|
|
pattern = <TokenPatternC*>mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC))
|
|
cdef int i, index
|
|
for i, (quantifier, spec, extensions, predicates, token_idx) in enumerate(token_specs):
|
|
pattern[i].quantifier = quantifier
|
|
# Ensure attrs refers to a null pointer if nr_attr == 0
|
|
if len(spec) > 0:
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(len(spec), sizeof(AttrValueC))
|
|
pattern[i].nr_attr = len(spec)
|
|
for j, (attr, value) in enumerate(spec):
|
|
pattern[i].attrs[j].attr = attr
|
|
pattern[i].attrs[j].value = value
|
|
if len(extensions) > 0:
|
|
pattern[i].extra_attrs = <IndexValueC*>mem.alloc(len(extensions), sizeof(IndexValueC))
|
|
for j, (index, value) in enumerate(extensions):
|
|
pattern[i].extra_attrs[j].index = index
|
|
pattern[i].extra_attrs[j].value = value
|
|
pattern[i].nr_extra_attr = len(extensions)
|
|
if len(predicates) > 0:
|
|
pattern[i].py_predicates = <int32_t*>mem.alloc(len(predicates), sizeof(int32_t))
|
|
for j, index in enumerate(predicates):
|
|
pattern[i].py_predicates[j] = index
|
|
pattern[i].nr_py = len(predicates)
|
|
pattern[i].key = hash64(pattern[i].attrs, pattern[i].nr_attr * sizeof(AttrValueC), 0)
|
|
pattern[i].token_idx = token_idx
|
|
i = len(token_specs)
|
|
# Use quantifier to identify final ID pattern node (rather than previous
|
|
# uninitialized quantifier == 0/ZERO + nr_attr == 0 + non-zero-length attrs)
|
|
pattern[i].quantifier = FINAL_ID
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(1, sizeof(AttrValueC))
|
|
pattern[i].attrs[0].attr = ID
|
|
pattern[i].attrs[0].value = entity_id
|
|
pattern[i].nr_attr = 1
|
|
pattern[i].nr_extra_attr = 0
|
|
pattern[i].nr_py = 0
|
|
pattern[i].token_idx = -1
|
|
return pattern
|
|
|
|
|
|
cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
|
|
while pattern.quantifier != FINAL_ID:
|
|
pattern += 1
|
|
id_attr = pattern[0].attrs[0]
|
|
if id_attr.attr != ID:
|
|
with gil:
|
|
raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr))
|
|
return id_attr.value
|
|
|
|
|
|
def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates, fuzzy_compare):
|
|
"""This function interprets the pattern, converting the various bits of
|
|
syntactic sugar before we compile it into a struct with init_pattern.
|
|
|
|
We need to split the pattern up into four parts:
|
|
* Normal attribute/value pairs, which are stored on either the token or lexeme,
|
|
can be handled directly.
|
|
* Extension attributes are handled specially, as we need to prefetch the
|
|
values from Python for the doc before we begin matching.
|
|
* Extra predicates also call Python functions, so we have to create the
|
|
functions and store them. So we store these specially as well.
|
|
* Extension attributes that have extra predicates are stored within the
|
|
extra_predicates.
|
|
* Token index that this pattern belongs to.
|
|
"""
|
|
tokens = []
|
|
string_store = vocab.strings
|
|
for token_idx, spec in enumerate(token_specs):
|
|
if not spec:
|
|
# Signifier for 'any token'
|
|
tokens.append((ONE, [(NULL_ATTR, 0)], [], [], token_idx))
|
|
continue
|
|
if not isinstance(spec, dict):
|
|
raise ValueError(Errors.E154.format())
|
|
ops = _get_operators(spec)
|
|
attr_values = _get_attr_values(spec, string_store)
|
|
extensions = _get_extensions(spec, string_store, extensions_table)
|
|
predicates = _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare)
|
|
for op in ops:
|
|
tokens.append((op, list(attr_values), list(extensions), list(predicates), token_idx))
|
|
return tokens
|
|
|
|
|
|
def _get_attr_values(spec, string_store):
|
|
attr_values = []
|
|
for attr, value in spec.items():
|
|
input_attr = attr
|
|
if isinstance(attr, str):
|
|
attr = attr.upper()
|
|
if attr == '_':
|
|
continue
|
|
elif attr == "OP":
|
|
continue
|
|
if attr == "TEXT":
|
|
attr = "ORTH"
|
|
if attr == "IS_SENT_START":
|
|
attr = "SENT_START"
|
|
attr = IDS.get(attr)
|
|
if isinstance(value, str):
|
|
if attr == ENT_IOB and value in Token.iob_strings():
|
|
value = Token.iob_strings().index(value)
|
|
else:
|
|
value = string_store.add(value)
|
|
elif isinstance(value, bool):
|
|
value = int(value)
|
|
elif isinstance(value, int):
|
|
pass
|
|
elif isinstance(value, dict):
|
|
continue
|
|
else:
|
|
raise ValueError(Errors.E153.format(vtype=type(value).__name__))
|
|
if attr is not None:
|
|
attr_values.append((attr, value))
|
|
else:
|
|
# should be caught in validation
|
|
raise ValueError(Errors.E152.format(attr=input_attr))
|
|
return attr_values
|
|
|
|
|
|
def _predicate_cache_key(attr, predicate, value, *, regex=False, fuzzy=None):
|
|
# tuple order affects performance
|
|
return (attr, regex, fuzzy, predicate, srsly.json_dumps(value, sort_keys=True))
|
|
|
|
|
|
# These predicate helper classes are used to match the REGEX, IN, >= etc
|
|
# extensions to the matcher introduced in #3173.
|
|
|
|
class _FuzzyPredicate:
|
|
operators = ("FUZZY", "FUZZY1", "FUZZY2", "FUZZY3", "FUZZY4", "FUZZY5",
|
|
"FUZZY6", "FUZZY7", "FUZZY8", "FUZZY9")
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
|
|
regex=False, fuzzy=None, fuzzy_compare=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.value = value
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
fuzz = self.predicate[len("FUZZY"):] # number after prefix
|
|
self.fuzzy = int(fuzz) if fuzz else -1
|
|
self.fuzzy_compare = fuzzy_compare
|
|
self.key = _predicate_cache_key(self.attr, self.predicate, value, fuzzy=self.fuzzy)
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = token._.get(self.attr)
|
|
else:
|
|
value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)]
|
|
if self.value == value:
|
|
return True
|
|
return self.fuzzy_compare(value, self.value, self.fuzzy)
|
|
|
|
|
|
class _RegexPredicate:
|
|
operators = ("REGEX",)
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
|
|
regex=False, fuzzy=None, fuzzy_compare=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.value = re.compile(value)
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
self.key = _predicate_cache_key(self.attr, self.predicate, value)
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = token._.get(self.attr)
|
|
else:
|
|
value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)]
|
|
return bool(self.value.search(value))
|
|
|
|
|
|
class _SetPredicate:
|
|
operators = ("IN", "NOT_IN", "IS_SUBSET", "IS_SUPERSET", "INTERSECTS")
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
|
|
regex=False, fuzzy=None, fuzzy_compare=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.vocab = vocab
|
|
self.regex = regex
|
|
self.fuzzy = fuzzy
|
|
self.fuzzy_compare = fuzzy_compare
|
|
if self.attr == MORPH:
|
|
# normalize morph strings
|
|
self.value = set(self.vocab.morphology.add(v) for v in value)
|
|
else:
|
|
if self.regex:
|
|
self.value = set(re.compile(v) for v in value)
|
|
elif self.fuzzy is not None:
|
|
# add to string store
|
|
self.value = set(self.vocab.strings.add(v) for v in value)
|
|
else:
|
|
self.value = set(get_string_id(v) for v in value)
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
self.key = _predicate_cache_key(self.attr, self.predicate, value, regex=self.regex, fuzzy=self.fuzzy)
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = token._.get(self.attr)
|
|
else:
|
|
value = get_token_attr_for_matcher(token.c, self.attr)
|
|
|
|
if self.predicate in ("IN", "NOT_IN"):
|
|
if isinstance(value, (str, int)):
|
|
value = get_string_id(value)
|
|
else:
|
|
return False
|
|
elif self.predicate in ("IS_SUBSET", "IS_SUPERSET", "INTERSECTS"):
|
|
# ensure that all values are enclosed in a set
|
|
if self.attr == MORPH:
|
|
# break up MORPH into individual Feat=Val values
|
|
value = set(get_string_id(v) for v in MorphAnalysis.from_id(self.vocab, value))
|
|
elif isinstance(value, (str, int)):
|
|
value = set((get_string_id(value),))
|
|
elif isinstance(value, Iterable) and all(isinstance(v, (str, int)) for v in value):
|
|
value = set(get_string_id(v) for v in value)
|
|
else:
|
|
return False
|
|
|
|
if self.predicate == "IN":
|
|
if self.regex:
|
|
value = self.vocab.strings[value]
|
|
return any(bool(v.search(value)) for v in self.value)
|
|
elif self.fuzzy is not None:
|
|
value = self.vocab.strings[value]
|
|
return any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy)
|
|
for v in self.value)
|
|
elif value in self.value:
|
|
return True
|
|
else:
|
|
return False
|
|
elif self.predicate == "NOT_IN":
|
|
if self.regex:
|
|
value = self.vocab.strings[value]
|
|
return not any(bool(v.search(value)) for v in self.value)
|
|
elif self.fuzzy is not None:
|
|
value = self.vocab.strings[value]
|
|
return not any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy)
|
|
for v in self.value)
|
|
elif value in self.value:
|
|
return False
|
|
else:
|
|
return True
|
|
elif self.predicate == "IS_SUBSET":
|
|
return value <= self.value
|
|
elif self.predicate == "IS_SUPERSET":
|
|
return value >= self.value
|
|
elif self.predicate == "INTERSECTS":
|
|
return bool(value & self.value)
|
|
|
|
def __repr__(self):
|
|
return repr(("SetPredicate", self.i, self.attr, self.value, self.predicate))
|
|
|
|
|
|
class _ComparisonPredicate:
|
|
operators = ("==", "!=", ">=", "<=", ">", "<")
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
|
|
regex=False, fuzzy=None, fuzzy_compare=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.value = value
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
self.key = _predicate_cache_key(self.attr, self.predicate, value)
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = token._.get(self.attr)
|
|
else:
|
|
value = get_token_attr_for_matcher(token.c, self.attr)
|
|
if self.predicate == "==":
|
|
return value == self.value
|
|
if self.predicate == "!=":
|
|
return value != self.value
|
|
elif self.predicate == ">=":
|
|
return value >= self.value
|
|
elif self.predicate == "<=":
|
|
return value <= self.value
|
|
elif self.predicate == ">":
|
|
return value > self.value
|
|
elif self.predicate == "<":
|
|
return value < self.value
|
|
|
|
|
|
def _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare):
|
|
predicate_types = {
|
|
"REGEX": _RegexPredicate,
|
|
"IN": _SetPredicate,
|
|
"NOT_IN": _SetPredicate,
|
|
"IS_SUBSET": _SetPredicate,
|
|
"IS_SUPERSET": _SetPredicate,
|
|
"INTERSECTS": _SetPredicate,
|
|
"==": _ComparisonPredicate,
|
|
"!=": _ComparisonPredicate,
|
|
">=": _ComparisonPredicate,
|
|
"<=": _ComparisonPredicate,
|
|
">": _ComparisonPredicate,
|
|
"<": _ComparisonPredicate,
|
|
"FUZZY": _FuzzyPredicate,
|
|
"FUZZY1": _FuzzyPredicate,
|
|
"FUZZY2": _FuzzyPredicate,
|
|
"FUZZY3": _FuzzyPredicate,
|
|
"FUZZY4": _FuzzyPredicate,
|
|
"FUZZY5": _FuzzyPredicate,
|
|
"FUZZY6": _FuzzyPredicate,
|
|
"FUZZY7": _FuzzyPredicate,
|
|
"FUZZY8": _FuzzyPredicate,
|
|
"FUZZY9": _FuzzyPredicate,
|
|
}
|
|
seen_predicates = {pred.key: pred.i for pred in extra_predicates}
|
|
output = []
|
|
for attr, value in spec.items():
|
|
if isinstance(attr, str):
|
|
if attr == "_":
|
|
output.extend(
|
|
_get_extension_extra_predicates(
|
|
value, extra_predicates, predicate_types,
|
|
seen_predicates))
|
|
continue
|
|
elif attr.upper() == "OP":
|
|
continue
|
|
if attr.upper() == "TEXT":
|
|
attr = "ORTH"
|
|
attr = IDS.get(attr.upper())
|
|
if isinstance(value, dict):
|
|
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
|
|
extra_predicates, seen_predicates, fuzzy_compare=fuzzy_compare))
|
|
return output
|
|
|
|
|
|
def _get_extra_predicates_dict(attr, value_dict, vocab, predicate_types,
|
|
extra_predicates, seen_predicates, regex=False, fuzzy=None, fuzzy_compare=None):
|
|
output = []
|
|
for type_, value in value_dict.items():
|
|
type_ = type_.upper()
|
|
cls = predicate_types.get(type_)
|
|
if cls is None:
|
|
warnings.warn(Warnings.W035.format(pattern=value_dict))
|
|
# ignore unrecognized predicate type
|
|
continue
|
|
elif cls == _RegexPredicate:
|
|
if isinstance(value, dict):
|
|
# add predicates inside regex operator
|
|
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
|
|
extra_predicates, seen_predicates,
|
|
regex=True))
|
|
continue
|
|
elif cls == _FuzzyPredicate:
|
|
if isinstance(value, dict):
|
|
# add predicates inside fuzzy operator
|
|
fuzz = type_[len("FUZZY"):] # number after prefix
|
|
fuzzy_val = int(fuzz) if fuzz else -1
|
|
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
|
|
extra_predicates, seen_predicates,
|
|
fuzzy=fuzzy_val, fuzzy_compare=fuzzy_compare))
|
|
continue
|
|
predicate = cls(len(extra_predicates), attr, value, type_, vocab=vocab,
|
|
regex=regex, fuzzy=fuzzy, fuzzy_compare=fuzzy_compare)
|
|
# Don't create redundant predicates.
|
|
# This helps with efficiency, as we're caching the results.
|
|
if predicate.key in seen_predicates:
|
|
output.append(seen_predicates[predicate.key])
|
|
else:
|
|
extra_predicates.append(predicate)
|
|
output.append(predicate.i)
|
|
seen_predicates[predicate.key] = predicate.i
|
|
return output
|
|
|
|
|
|
def _get_extension_extra_predicates(spec, extra_predicates, predicate_types,
|
|
seen_predicates):
|
|
output = []
|
|
for attr, value in spec.items():
|
|
if isinstance(value, dict):
|
|
for type_, cls in predicate_types.items():
|
|
if type_ in value:
|
|
key = _predicate_cache_key(attr, type_, value[type_])
|
|
if key in seen_predicates:
|
|
output.append(seen_predicates[key])
|
|
else:
|
|
predicate = cls(len(extra_predicates), attr, value[type_], type_,
|
|
is_extension=True)
|
|
extra_predicates.append(predicate)
|
|
output.append(predicate.i)
|
|
seen_predicates[key] = predicate.i
|
|
return output
|
|
|
|
|
|
def _get_operators(spec):
|
|
# Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS
|
|
lookup = {"*": (ZERO_PLUS,), "+": (ONE, ZERO_PLUS),
|
|
"?": (ZERO_ONE,), "1": (ONE,), "!": (ZERO,)}
|
|
# Fix casing
|
|
spec = {key.upper(): values for key, values in spec.items()
|
|
if isinstance(key, str)}
|
|
if "OP" not in spec:
|
|
return (ONE,)
|
|
elif spec["OP"] in lookup:
|
|
return lookup[spec["OP"]]
|
|
#Min_max {n,m}
|
|
elif spec["OP"].startswith("{") and spec["OP"].endswith("}"):
|
|
# {n} --> {n,n} exactly n ONE,(n)
|
|
# {n,m}--> {n,m} min of n, max of m ONE,(n),ZERO_ONE,(m)
|
|
# {,m} --> {0,m} min of zero, max of m ZERO_ONE,(m)
|
|
# {n,} --> {n,∞} min of n, max of inf ONE,(n),ZERO_PLUS
|
|
|
|
min_max = spec["OP"][1:-1]
|
|
min_max = min_max if "," in min_max else f"{min_max},{min_max}"
|
|
n, m = min_max.split(",")
|
|
|
|
#1. Either n or m is a blank string and the other is numeric -->isdigit
|
|
#2. Both are numeric and n <= m
|
|
if (not n.isdecimal() and not m.isdecimal()) or (n.isdecimal() and m.isdecimal() and int(n) > int(m)):
|
|
keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m "
|
|
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
|
|
|
|
# if n is empty string, zero would be used
|
|
head = tuple(ONE for __ in range(int(n or 0)))
|
|
tail = tuple(ZERO_ONE for __ in range(int(m) - int(n or 0))) if m else (ZERO_PLUS,)
|
|
return head + tail
|
|
else:
|
|
keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m "
|
|
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
|
|
|
|
|
|
def _get_extensions(spec, string_store, name2index):
|
|
attr_values = []
|
|
if not isinstance(spec.get("_", {}), dict):
|
|
raise ValueError(Errors.E154.format())
|
|
for name, value in spec.get("_", {}).items():
|
|
if isinstance(value, dict):
|
|
# Handle predicates (e.g. "IN", in the extra_predicates, not here.
|
|
continue
|
|
if isinstance(value, str):
|
|
value = string_store.add(value)
|
|
if name not in name2index:
|
|
name2index[name] = len(name2index)
|
|
attr_values.append((name2index[name], value))
|
|
return attr_values
|