mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
93 lines
3.3 KiB
Python
93 lines
3.3 KiB
Python
from typing import Optional, Sequence, Union, Iterator
|
|
import tqdm
|
|
from pathlib import Path
|
|
import srsly
|
|
import cProfile
|
|
import pstats
|
|
import sys
|
|
import itertools
|
|
from wasabi import msg, Printer
|
|
import typer
|
|
|
|
from ._util import app, debug_cli, Arg, Opt, NAME
|
|
from ..language import Language
|
|
from ..util import load_model
|
|
|
|
|
|
@debug_cli.command("profile")
|
|
@app.command("profile", hidden=True)
|
|
def profile_cli(
|
|
# fmt: off
|
|
ctx: typer.Context, # This is only used to read current calling context
|
|
model: str = Arg(..., help="Model to load"),
|
|
inputs: Optional[Path] = Arg(None, help="Location of input file. '-' for stdin.", exists=True, allow_dash=True),
|
|
n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"),
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Profile which functions take the most time in a spaCy pipeline.
|
|
Input should be formatted as one JSON object per line with a key "text".
|
|
It can either be provided as a JSONL file, or be read from sys.sytdin.
|
|
If no input file is specified, the IMDB dataset is loaded via Thinc.
|
|
"""
|
|
if ctx.parent.command.name == NAME: # called as top-level command
|
|
msg.warn(
|
|
"The profile command is now available via the 'debug profile' "
|
|
"subcommand. You can run python -m spacy debug --help for an "
|
|
"overview of the other available debugging commands."
|
|
)
|
|
profile(model, inputs=inputs, n_texts=n_texts)
|
|
|
|
|
|
def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) -> None:
|
|
|
|
if inputs is not None:
|
|
inputs = _read_inputs(inputs, msg)
|
|
if inputs is None:
|
|
try:
|
|
import ml_datasets
|
|
except ImportError:
|
|
msg.fail(
|
|
"This command, when run without an input file, "
|
|
"requires the ml_datasets library to be installed: "
|
|
"pip install ml_datasets",
|
|
exits=1,
|
|
)
|
|
|
|
n_inputs = 25000
|
|
with msg.loading("Loading IMDB dataset via Thinc..."):
|
|
imdb_train, _ = ml_datasets.imdb()
|
|
inputs, _ = zip(*imdb_train)
|
|
msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
|
|
inputs = inputs[:n_inputs]
|
|
with msg.loading(f"Loading model '{model}'..."):
|
|
nlp = load_model(model)
|
|
msg.good(f"Loaded model '{model}'")
|
|
texts = list(itertools.islice(inputs, n_texts))
|
|
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
|
|
s = pstats.Stats("Profile.prof")
|
|
msg.divider("Profile stats")
|
|
s.strip_dirs().sort_stats("time").print_stats()
|
|
|
|
|
|
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
|
|
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
|
|
pass
|
|
|
|
|
|
def _read_inputs(loc: Union[Path, str], msg: Printer) -> Iterator[str]:
|
|
if loc == "-":
|
|
msg.info("Reading input from sys.stdin")
|
|
file_ = sys.stdin
|
|
file_ = (line.encode("utf8") for line in file_)
|
|
else:
|
|
input_path = Path(loc)
|
|
if not input_path.exists() or not input_path.is_file():
|
|
msg.fail("Not a valid input data file", loc, exits=1)
|
|
msg.info(f"Using data from {input_path.parts[-1]}")
|
|
file_ = input_path.open()
|
|
for line in file_:
|
|
data = srsly.json_loads(line)
|
|
text = data["text"]
|
|
yield text
|