mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 09:44:36 +03:00
323 lines
10 KiB
Cython
323 lines
10 KiB
Cython
from libcpp.vector cimport vector
|
|
from libc.stdint cimport uint32_t
|
|
from libc.stdint cimport int64_t
|
|
from libc.stdint cimport int32_t
|
|
from libc.stdint cimport uint64_t
|
|
|
|
from preshed.maps cimport PreshMap
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
import numpy
|
|
|
|
cimport cython
|
|
|
|
ctypedef unsigned char uchar
|
|
|
|
# Format
|
|
# - Total number of bytes in message (32 bit int)
|
|
# - Words, terminating in an EOL symbol, huffman coded ~12 bits per word
|
|
# - Spaces ~1 bit per word
|
|
# - Parse: Huffman coded head offset / dep label / POS tag / entity IOB tag
|
|
# combo. ? bits per word. 40 * 80 * 40 * 12 = 1.5m symbol vocab
|
|
|
|
|
|
# Note that we're setting the most significant bits here first, when in practice
|
|
# we're actually wanting the last bit to be most significant (for Huffman coding,
|
|
# anyway).
|
|
cdef Code bit_append(Code code, bint bit) nogil:
|
|
cdef uint64_t one = 1
|
|
if bit:
|
|
code.bits |= one << code.length
|
|
else:
|
|
code.bits &= ~(one << code.length)
|
|
code.length += 1
|
|
return code
|
|
|
|
|
|
cdef class BitArray:
|
|
cdef bytes data
|
|
cdef unsigned char byte
|
|
cdef unsigned char bit_of_byte
|
|
cdef uint32_t i
|
|
def __init__(self):
|
|
self.data = b''
|
|
self.byte = 0
|
|
self.bit_of_byte = 0
|
|
self.i = 0
|
|
|
|
def __iter__(self):
|
|
cdef uchar byte, i
|
|
cdef uchar one = 1
|
|
start_byte = self.i // 8
|
|
if (self.i % 8) != 0:
|
|
for i in range(self.i % 8):
|
|
yield 1 if (self.data[start_byte] & (one << i)) else 0
|
|
start_byte += 1
|
|
for byte in self.data[start_byte:]:
|
|
for i in range(8):
|
|
yield 1 if byte & (one << i) else 0
|
|
for i in range(self.bit_of_byte):
|
|
yield 1 if self.byte & (one << i) else 0
|
|
|
|
def as_bytes(self):
|
|
if self.bit_of_byte != 0:
|
|
return self.data + chr(self.byte)
|
|
else:
|
|
return self.data
|
|
|
|
def append(self, bint bit):
|
|
cdef uint64_t one = 1
|
|
print 'append', bit
|
|
if bit:
|
|
self.byte |= one << self.bit_of_byte
|
|
else:
|
|
self.byte &= ~(one << self.bit_of_byte)
|
|
self.bit_of_byte += 1
|
|
if self.bit_of_byte == 8:
|
|
self.data += chr(self.byte)
|
|
self.byte = 0
|
|
self.bit_of_byte = 0
|
|
|
|
cdef int extend(self, uint64_t code, char n_bits) except -1:
|
|
cdef uint64_t one = 1
|
|
cdef unsigned char bit_of_code
|
|
for bit_of_code in range(n_bits):
|
|
if code & (one << bit_of_code):
|
|
self.byte |= one << self.bit_of_byte
|
|
else:
|
|
self.byte &= ~(one << self.bit_of_byte)
|
|
self.bit_of_byte += 1
|
|
if self.bit_of_byte == 8:
|
|
self.data += chr(self.byte)
|
|
self.byte = 0
|
|
self.bit_of_byte = 0
|
|
|
|
|
|
cdef class Serializer:
|
|
# Manage codecs, maintain consistent format for io
|
|
def __init__(self, Vocab vocab, model_dir):
|
|
self.vocab = vocab
|
|
self.lex = None
|
|
self.codecs = []
|
|
|
|
def __call__(self, doc_or_bits):
|
|
if isinstance(doc_or_bits, Doc):
|
|
return self.serialize(doc_or_bits)
|
|
elif isinstance(doc_or_bits, BitArray):
|
|
return self.deserialize(doc_or_bits)
|
|
else:
|
|
raise ValueError(doc_or_bits)
|
|
|
|
def train(self, doc):
|
|
array = doc.to_array(self.attrs)
|
|
for i, attr in enumerate(self.attrs):
|
|
for j in range(doc.length):
|
|
self.freqs[attr].inc(array[i, j], 1)
|
|
self.freqs[attr].inc(self.eol, 1)
|
|
|
|
def serialize(self, doc):
|
|
bits = BitArray()
|
|
array = doc.to_array(self.attrs)
|
|
for i, attr in enumerate(self.attrs, self.codecs):
|
|
codec.encode(array[i,], bits)
|
|
return bits
|
|
|
|
@cython.boundscheck(False)
|
|
def deserialize(self, bits):
|
|
cdef Doc doc = Doc(self.vocab)
|
|
biterator = iter(bits)
|
|
ids = self.codecs[0].decode(bits)
|
|
cdef int id_
|
|
cdef bint is_spacy
|
|
for id_ in ids:
|
|
is_spacy = biterator.next()
|
|
doc.push_back(vocab.lexemes.at(id_), is_spacy)
|
|
|
|
cdef int length = doc.length
|
|
cdef int i
|
|
cdef attr_t value
|
|
cdef attr_id_t attr_id
|
|
cdef attr_t[:] values
|
|
cdef TokenC* tokens = doc.data
|
|
for codec in vocab.codecs[1:]:
|
|
values = codec.decode(biterator)
|
|
attr_id = codec.id
|
|
if attr_id == HEAD:
|
|
for i in range(length):
|
|
tokens[i].head = values[i]
|
|
elif attr_id == TAG:
|
|
for i in range(length):
|
|
tokens[i].tag = values[i]
|
|
elif attr_id == DEP:
|
|
for i in range(length):
|
|
tokens[i].dep = values[i]
|
|
elif attr_id == ENT_IOB:
|
|
for i in range(length):
|
|
tokens[i].ent_iob = values[i]
|
|
elif attr_id == ENT_TYPE:
|
|
for i in range(length):
|
|
tokens[i].ent_type = values[i]
|
|
return doc
|
|
|
|
def lex_codec(self):
|
|
cdef Address mem
|
|
cdef int i
|
|
cdef float[:] cv_probs
|
|
mem = Address(len(self), sizeof(float))
|
|
probs = <float*>mem.ptr
|
|
for i in range(len(self.vocab)):
|
|
probs[i] = <float>c_exp(self.lexemes[i].prob)
|
|
cv_probs = <float[:len(self)]>probs
|
|
return HuffmanCodec(cv_probs, 0, id=ID)
|
|
|
|
|
|
cdef class HuffmanCodec:
|
|
"""Create a Huffman code table, and use it to pack and unpack sequences into
|
|
byte strings. Emphasis is on efficiency, so API is quite strict:
|
|
|
|
Messages will be encoded/decoded as indices that refer to the probability sequence.
|
|
For instance, the sequence [5, 10, 8] indicates the 5th most frequent item,
|
|
the 10th most frequent item, the 8th most frequent item. The codec will add
|
|
the EOL symbol to your message. An exception will be raised if you include
|
|
the EOL symbol in your message.
|
|
|
|
Arguments:
|
|
probs (float[:]): A descending-sorted sequence of probabilities/weights.
|
|
Must include a weight for an EOL symbol.
|
|
|
|
eol (uint32_t): The index of the weight of the EOL symbol.
|
|
"""
|
|
def __init__(self, float[:] probs, uint32_t eol, id=0):
|
|
self.id = id
|
|
self.eol = eol
|
|
self.codes.resize(len(probs))
|
|
for i in range(len(self.codes)):
|
|
self.codes[i].bits = 0
|
|
self.codes[i].length = 0
|
|
populate_nodes(self.nodes, probs)
|
|
cdef Code path
|
|
path.bits = 0
|
|
path.length = 0
|
|
assign_codes(self.nodes, self.codes, len(self.nodes) - 1, path)
|
|
|
|
def encode(self, uint32_t[:] sequence, BitArray bits=None):
|
|
if bits is None:
|
|
bits = BitArray()
|
|
for i in sequence:
|
|
bits.extend(self.codes[i].bits, self.codes[i].length)
|
|
bits.extend(self.codes[self.eol].bits, self.codes[self.eol].length)
|
|
return bits
|
|
|
|
def decode(self, bits):
|
|
node = self.nodes.back()
|
|
symbols = []
|
|
for bit in bits:
|
|
branch = node.right if bit else node.left
|
|
if branch >= 0:
|
|
node = self.nodes.at(branch)
|
|
else:
|
|
symbol = -(branch + 1)
|
|
if symbol == self.eol:
|
|
return symbols
|
|
else:
|
|
symbols.append(symbol)
|
|
node = self.nodes.back()
|
|
return symbols
|
|
|
|
property strings:
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
@cython.nonecheck(False)
|
|
def __get__(self):
|
|
output = []
|
|
cdef int i, j
|
|
cdef bytes string
|
|
cdef Code code
|
|
for i in range(self.codes.size()):
|
|
code = self.codes[i]
|
|
string = b'{0:b}'.format(code.bits).rjust(code.length, '0')
|
|
string = string[::-1]
|
|
output.append(string)
|
|
return output
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
@cython.nonecheck(False)
|
|
cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1:
|
|
assert len(probs) >= 3
|
|
cdef int size = len(probs)
|
|
cdef int i = size - 1
|
|
cdef int j = 0
|
|
|
|
while i >= 0 or (j+1) < nodes.size():
|
|
if i < 0:
|
|
_cover_two_nodes(nodes, j)
|
|
j += 2
|
|
elif j >= nodes.size():
|
|
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
|
|
i -= 2
|
|
elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob):
|
|
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
|
|
i -= 2
|
|
elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]:
|
|
_cover_two_nodes(nodes, j)
|
|
j += 2
|
|
else:
|
|
_cover_one_word_one_node(nodes, j, i, probs[i])
|
|
i -= 1
|
|
j += 1
|
|
return 0
|
|
|
|
cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil:
|
|
cdef Node node
|
|
node.left = j
|
|
node.right = j+1
|
|
node.prob = nodes[j].prob + nodes[j+1].prob
|
|
nodes.push_back(node)
|
|
|
|
|
|
cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil:
|
|
cdef Node node
|
|
# Encode leaves as negative integers, where the integer is the index of the
|
|
# word in the vocabulary.
|
|
cdef int64_t leaf_id = - <int64_t>(id_ + 1)
|
|
cdef float new_prob = prob + nodes[j].prob
|
|
if prob < nodes[j].prob:
|
|
node.left = leaf_id
|
|
node.right = j
|
|
node.prob = new_prob
|
|
else:
|
|
node.left = j
|
|
node.right = leaf_id
|
|
node.prob = new_prob
|
|
nodes.push_back(node)
|
|
|
|
|
|
cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil:
|
|
cdef Node node
|
|
node.left = -(id1+1)
|
|
node.right = -(id2+1)
|
|
node.prob = prob
|
|
nodes.push_back(node)
|
|
|
|
|
|
cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, Code path) except -1:
|
|
cdef Code left_path = bit_append(path, 0)
|
|
cdef Code right_path = bit_append(path, 1)
|
|
|
|
# Assign down left branch
|
|
if nodes[i].left >= 0:
|
|
assign_codes(nodes, codes, nodes[i].left, left_path)
|
|
else:
|
|
# Leaf on left
|
|
id_ = -(nodes[i].left + 1)
|
|
codes[id_] = left_path
|
|
# Assign down right branch
|
|
if nodes[i].right >= 0:
|
|
assign_codes(nodes, codes, nodes[i].right, right_path)
|
|
else:
|
|
# Leaf on right
|
|
id_ = -(nodes[i].right + 1)
|
|
codes[id_] = right_path
|