mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Support a cfg field in transition system * Make NER 'has gold' check use right alignment for span * Pass 'negative_samples_key' property into NER transition system * Add field for negative samples to NER transition system * Check neg_key in NER has_gold * Support negative examples in NER oracle * Test for negative examples in NER * Fix name of config variable in NER * Remove vestiges of old-style partial annotation * Remove obsolete tests * Add comment noting lack of support for negative samples in parser * Additions to "neg examples" PR (#8201) * add custom error and test for deprecated format * add test for unlearning an entity * add break also for Begin's cost * add negative_samples_key property on Parser * rename * extend docs & fix some older docs issues * add subclass constructors, clean up tests, fix docs * add flaky test with ValueError if gold parse was not found * remove ValueError if n_gold == 0 * fix docstring * Hack in environment variables to try out training * Remove hack * Remove NER hack, and support 'negative O' samples * Fix O oracle * Fix transition parser * Remove 'not O' from oracle * Fix NER oracle * check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation * use set instead of list in consistency check Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from thinc.api import Adam
 | 
						|
from spacy.attrs import NORM
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy import registry
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.pipeline import DependencyParser
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    return Vocab(lex_attr_getters={NORM: lambda s: s})
 | 
						|
 | 
						|
 | 
						|
def _parser_example(parser):
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
 | 
						|
    return Example.from_dict(doc, gold)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def parser(vocab):
 | 
						|
    vocab.strings.add("ROOT")
 | 
						|
    cfg = {"model": DEFAULT_PARSER_MODEL}
 | 
						|
    model = registry.resolve(cfg, validate=True)["model"]
 | 
						|
    parser = DependencyParser(vocab, model)
 | 
						|
    parser.cfg["token_vector_width"] = 4
 | 
						|
    parser.cfg["hidden_width"] = 32
 | 
						|
    # parser.add_label('right')
 | 
						|
    parser.add_label("left")
 | 
						|
    parser.initialize(lambda: [_parser_example(parser)])
 | 
						|
    sgd = Adam(0.001)
 | 
						|
 | 
						|
    for i in range(10):
 | 
						|
        losses = {}
 | 
						|
        doc = Doc(vocab, words=["a", "b", "c", "d"])
 | 
						|
        example = Example.from_dict(
 | 
						|
            doc, {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
 | 
						|
        )
 | 
						|
        parser.update([example], sgd=sgd, losses=losses)
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def test_no_sentences(parser):
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc = parser(doc)
 | 
						|
    assert len(list(doc.sents)) >= 1
 | 
						|
 | 
						|
 | 
						|
def test_sents_1(parser):
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc[2].sent_start = True
 | 
						|
    doc = parser(doc)
 | 
						|
    assert len(list(doc.sents)) >= 2
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc[1].sent_start = False
 | 
						|
    doc[2].sent_start = True
 | 
						|
    doc[3].sent_start = False
 | 
						|
    doc = parser(doc)
 | 
						|
    assert len(list(doc.sents)) == 2
 | 
						|
 | 
						|
 | 
						|
def test_sents_1_2(parser):
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc[1].sent_start = True
 | 
						|
    doc[2].sent_start = True
 | 
						|
    doc = parser(doc)
 | 
						|
    assert len(list(doc.sents)) >= 3
 | 
						|
 | 
						|
 | 
						|
def test_sents_1_3(parser):
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc[0].is_sent_start = True
 | 
						|
    doc[1].is_sent_start = True
 | 
						|
    doc[2].is_sent_start = None
 | 
						|
    doc[3].is_sent_start = True
 | 
						|
    doc = parser(doc)
 | 
						|
    assert len(list(doc.sents)) >= 3
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc[0].is_sent_start = True
 | 
						|
    doc[1].is_sent_start = True
 | 
						|
    doc[2].is_sent_start = False
 | 
						|
    doc[3].is_sent_start = True
 | 
						|
    doc = parser(doc)
 | 
						|
    assert len(list(doc.sents)) == 3
 |