mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			310 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			310 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import List, Dict, Set, Iterable, Iterator, Union, Optional
 | 
						|
from pathlib import Path
 | 
						|
import numpy
 | 
						|
from numpy import ndarray
 | 
						|
import zlib
 | 
						|
import srsly
 | 
						|
from thinc.api import NumpyOps
 | 
						|
 | 
						|
from .doc import Doc
 | 
						|
from ..vocab import Vocab
 | 
						|
from ..compat import copy_reg
 | 
						|
from ..attrs import SPACY, ORTH, intify_attr, IDS
 | 
						|
from ..errors import Errors
 | 
						|
from ..util import ensure_path, SimpleFrozenList
 | 
						|
from ._dict_proxies import SpanGroups
 | 
						|
 | 
						|
# fmt: off
 | 
						|
ALL_ATTRS = ("ORTH", "NORM", "TAG", "HEAD", "DEP", "ENT_IOB", "ENT_TYPE", "ENT_KB_ID", "ENT_ID", "LEMMA", "MORPH", "POS", "SENT_START")
 | 
						|
# fmt: on
 | 
						|
 | 
						|
 | 
						|
class DocBin:
 | 
						|
    """Pack Doc objects for binary serialization.
 | 
						|
 | 
						|
    The DocBin class lets you efficiently serialize the information from a
 | 
						|
    collection of Doc objects. You can control which information is serialized
 | 
						|
    by passing a list of attribute IDs, and optionally also specify whether the
 | 
						|
    user data is serialized. The DocBin is faster and produces smaller data
 | 
						|
    sizes than pickle, and allows you to deserialize without executing arbitrary
 | 
						|
    Python code.
 | 
						|
 | 
						|
    The serialization format is gzipped msgpack, where the msgpack object has
 | 
						|
    the following structure:
 | 
						|
 | 
						|
    {
 | 
						|
        "attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
 | 
						|
        "tokens": bytes, # Serialized numpy uint64 array with the token data
 | 
						|
        "spans": List[Dict[str, bytes]], # SpanGroups data for each doc
 | 
						|
        "spaces": bytes, # Serialized numpy boolean array with spaces data
 | 
						|
        "lengths": bytes, # Serialized numpy int32 array with the doc lengths
 | 
						|
        "strings": List[str] # List of unique strings in the token data
 | 
						|
        "version": str, # DocBin version number
 | 
						|
    }
 | 
						|
 | 
						|
    Strings for the words, tags, labels etc are represented by 64-bit hashes in
 | 
						|
    the token data, and every string that occurs at least once is passed via the
 | 
						|
    strings object. This means the storage is more efficient if you pack more
 | 
						|
    documents together, because you have less duplication in the strings.
 | 
						|
 | 
						|
    A notable downside to this format is that you can't easily extract just one
 | 
						|
    document from the DocBin.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        attrs: Iterable[str] = ALL_ATTRS,
 | 
						|
        store_user_data: bool = False,
 | 
						|
        docs: Iterable[Doc] = SimpleFrozenList(),
 | 
						|
    ) -> None:
 | 
						|
        """Create a DocBin object to hold serialized annotations.
 | 
						|
 | 
						|
        attrs (Iterable[str]): List of attributes to serialize. 'orth' and
 | 
						|
            'spacy' are always serialized, so they're not required.
 | 
						|
        store_user_data (bool): Whether to write the `Doc.user_data` to bytes/file.
 | 
						|
        docs (Iterable[Doc]): Docs to add.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#init
 | 
						|
        """
 | 
						|
        int_attrs = [intify_attr(attr) for attr in attrs]
 | 
						|
        if None in int_attrs:
 | 
						|
            non_valid = [attr for attr in attrs if intify_attr(attr) is None]
 | 
						|
            raise KeyError(
 | 
						|
                Errors.E983.format(dict="attrs", key=non_valid, keys=IDS.keys())
 | 
						|
            ) from None
 | 
						|
        attrs = sorted(int_attrs)
 | 
						|
        self.version = "0.1"
 | 
						|
        self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
 | 
						|
        self.attrs.insert(0, ORTH)  # Ensure ORTH is always attrs[0]
 | 
						|
        self.tokens: List[ndarray] = []
 | 
						|
        self.spaces: List[ndarray] = []
 | 
						|
        self.cats: List[Dict] = []
 | 
						|
        self.span_groups: List[bytes] = []
 | 
						|
        self.user_data: List[Optional[bytes]] = []
 | 
						|
        self.flags: List[Dict] = []
 | 
						|
        self.strings: Set[str] = set()
 | 
						|
        self.store_user_data = store_user_data
 | 
						|
        for doc in docs:
 | 
						|
            self.add(doc)
 | 
						|
 | 
						|
    def __len__(self) -> int:
 | 
						|
        """RETURNS: The number of Doc objects added to the DocBin."""
 | 
						|
        return len(self.tokens)
 | 
						|
 | 
						|
    def add(self, doc: Doc) -> None:
 | 
						|
        """Add a Doc's annotations to the DocBin for serialization.
 | 
						|
 | 
						|
        doc (Doc): The Doc object to add.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#add
 | 
						|
        """
 | 
						|
        array = doc.to_array(self.attrs)
 | 
						|
        if len(array.shape) == 1:
 | 
						|
            array = array.reshape((array.shape[0], 1))
 | 
						|
        self.tokens.append(array)
 | 
						|
        spaces = doc.to_array(SPACY)
 | 
						|
        assert array.shape[0] == spaces.shape[0]  # this should never happen
 | 
						|
        spaces = spaces.reshape((spaces.shape[0], 1))
 | 
						|
        self.spaces.append(numpy.asarray(spaces, dtype=bool))
 | 
						|
        self.flags.append({"has_unknown_spaces": doc.has_unknown_spaces})
 | 
						|
        for token in doc:
 | 
						|
            self.strings.add(token.text)
 | 
						|
            self.strings.add(token.tag_)
 | 
						|
            self.strings.add(token.lemma_)
 | 
						|
            self.strings.add(token.norm_)
 | 
						|
            self.strings.add(str(token.morph))
 | 
						|
            self.strings.add(token.dep_)
 | 
						|
            self.strings.add(token.ent_type_)
 | 
						|
            self.strings.add(token.ent_kb_id_)
 | 
						|
            self.strings.add(token.ent_id_)
 | 
						|
        self.cats.append(doc.cats)
 | 
						|
        if self.store_user_data:
 | 
						|
            self.user_data.append(srsly.msgpack_dumps(doc.user_data))
 | 
						|
        self.span_groups.append(doc.spans.to_bytes())
 | 
						|
        for key, group in doc.spans.items():
 | 
						|
            for span in group:
 | 
						|
                self.strings.add(span.label_)
 | 
						|
                if span.kb_id in span.doc.vocab.strings:
 | 
						|
                    self.strings.add(span.kb_id_)
 | 
						|
                if span.id in span.doc.vocab.strings:
 | 
						|
                    self.strings.add(span.id_)
 | 
						|
 | 
						|
    def get_docs(self, vocab: Vocab) -> Iterator[Doc]:
 | 
						|
        """Recover Doc objects from the annotations, using the given vocab.
 | 
						|
        Note that the user data of each doc will be read (if available) and returned,
 | 
						|
        regardless of the setting of 'self.store_user_data'.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocab.
 | 
						|
        YIELDS (Doc): The Doc objects.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#get_docs
 | 
						|
        """
 | 
						|
        for string in self.strings:
 | 
						|
            vocab[string]
 | 
						|
        orth_col = self.attrs.index(ORTH)
 | 
						|
        for i in range(len(self.tokens)):
 | 
						|
            flags = self.flags[i]
 | 
						|
            tokens = self.tokens[i]
 | 
						|
            spaces: Optional[ndarray] = self.spaces[i]
 | 
						|
            if flags.get("has_unknown_spaces"):
 | 
						|
                spaces = None
 | 
						|
            doc = Doc(vocab, words=tokens[:, orth_col], spaces=spaces)  # type: ignore
 | 
						|
            doc = doc.from_array(self.attrs, tokens)  # type: ignore
 | 
						|
            doc.cats = self.cats[i]
 | 
						|
            # backwards-compatibility: may be b'' or serialized empty list
 | 
						|
            if self.span_groups[i] and self.span_groups[i] != SpanGroups._EMPTY_BYTES:
 | 
						|
                doc.spans.from_bytes(self.span_groups[i])
 | 
						|
            else:
 | 
						|
                doc.spans.clear()
 | 
						|
            if i < len(self.user_data) and self.user_data[i] is not None:
 | 
						|
                user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
 | 
						|
                doc.user_data.update(user_data)
 | 
						|
            yield doc
 | 
						|
 | 
						|
    def merge(self, other: "DocBin") -> None:
 | 
						|
        """Extend the annotations of this DocBin with the annotations from
 | 
						|
        another. Will raise an error if the pre-defined attrs of the two
 | 
						|
        DocBins don't match, or if they differ in whether or not to store
 | 
						|
        user data.
 | 
						|
 | 
						|
        other (DocBin): The DocBin to merge into the current bin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#merge
 | 
						|
        """
 | 
						|
        if self.attrs != other.attrs:
 | 
						|
            raise ValueError(
 | 
						|
                Errors.E166.format(param="attrs", current=self.attrs, other=other.attrs)
 | 
						|
            )
 | 
						|
        if self.store_user_data != other.store_user_data:
 | 
						|
            raise ValueError(
 | 
						|
                Errors.E166.format(
 | 
						|
                    param="store_user_data",
 | 
						|
                    current=self.store_user_data,
 | 
						|
                    other=other.store_user_data,
 | 
						|
                )
 | 
						|
            )
 | 
						|
        self.tokens.extend(other.tokens)
 | 
						|
        self.spaces.extend(other.spaces)
 | 
						|
        self.strings.update(other.strings)
 | 
						|
        self.cats.extend(other.cats)
 | 
						|
        self.span_groups.extend(other.span_groups)
 | 
						|
        self.flags.extend(other.flags)
 | 
						|
        self.user_data.extend(other.user_data)
 | 
						|
 | 
						|
    def to_bytes(self) -> bytes:
 | 
						|
        """Serialize the DocBin's annotations to a bytestring.
 | 
						|
 | 
						|
        RETURNS (bytes): The serialized DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#to_bytes
 | 
						|
        """
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | 
						|
        lengths = [len(tokens) for tokens in self.tokens]
 | 
						|
        tokens = numpy.vstack(self.tokens) if self.tokens else numpy.asarray([])
 | 
						|
        spaces = numpy.vstack(self.spaces) if self.spaces else numpy.asarray([])
 | 
						|
        msg = {
 | 
						|
            "version": self.version,
 | 
						|
            "attrs": self.attrs,
 | 
						|
            "tokens": tokens.tobytes("C"),
 | 
						|
            "spaces": spaces.tobytes("C"),
 | 
						|
            "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
 | 
						|
            "strings": list(sorted(self.strings)),
 | 
						|
            "cats": self.cats,
 | 
						|
            "flags": self.flags,
 | 
						|
            "span_groups": self.span_groups,
 | 
						|
        }
 | 
						|
        if self.store_user_data:
 | 
						|
            msg["user_data"] = self.user_data
 | 
						|
        return zlib.compress(srsly.msgpack_dumps(msg))
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data: bytes) -> "DocBin":
 | 
						|
        """Deserialize the DocBin's annotations from a bytestring.
 | 
						|
 | 
						|
        bytes_data (bytes): The data to load from.
 | 
						|
        RETURNS (DocBin): The loaded DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#from_bytes
 | 
						|
        """
 | 
						|
        try:
 | 
						|
            msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
 | 
						|
        except zlib.error:
 | 
						|
            raise ValueError(Errors.E1014)
 | 
						|
        self.attrs = msg["attrs"]
 | 
						|
        self.strings = set(msg["strings"])
 | 
						|
        lengths = numpy.frombuffer(msg["lengths"], dtype="int32")
 | 
						|
        flat_spaces = numpy.frombuffer(msg["spaces"], dtype=bool)
 | 
						|
        flat_tokens = numpy.frombuffer(msg["tokens"], dtype="uint64")
 | 
						|
        shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
 | 
						|
        flat_tokens = flat_tokens.reshape(shape)
 | 
						|
        flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
 | 
						|
        self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
 | 
						|
        self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
 | 
						|
        self.cats = msg["cats"]
 | 
						|
        self.span_groups = msg.get("span_groups", [b"" for _ in lengths])
 | 
						|
        self.flags = msg.get("flags", [{} for _ in lengths])
 | 
						|
        if "user_data" in msg:
 | 
						|
            self.user_data = list(msg["user_data"])
 | 
						|
        else:
 | 
						|
            self.user_data = [None] * len(self)
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_disk(self, path: Union[str, Path]) -> None:
 | 
						|
        """Save the DocBin to a file (typically called .spacy).
 | 
						|
 | 
						|
        path (str / Path): The file path.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#to_disk
 | 
						|
        """
 | 
						|
        path = ensure_path(path)
 | 
						|
        with path.open("wb") as file_:
 | 
						|
            try:
 | 
						|
                file_.write(self.to_bytes())
 | 
						|
            except ValueError:
 | 
						|
                raise ValueError(Errors.E870)
 | 
						|
 | 
						|
    def from_disk(self, path: Union[str, Path]) -> "DocBin":
 | 
						|
        """Load the DocBin from a file (typically called .spacy).
 | 
						|
 | 
						|
        path (str / Path): The file path.
 | 
						|
        RETURNS (DocBin): The loaded DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#to_disk
 | 
						|
        """
 | 
						|
        path = ensure_path(path)
 | 
						|
        with path.open("rb") as file_:
 | 
						|
            self.from_bytes(file_.read())
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
def merge_bins(bins):
 | 
						|
    merged = None
 | 
						|
    for byte_string in bins:
 | 
						|
        if byte_string is not None:
 | 
						|
            doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
 | 
						|
            if merged is None:
 | 
						|
                merged = doc_bin
 | 
						|
            else:
 | 
						|
                merged.merge(doc_bin)
 | 
						|
    if merged is not None:
 | 
						|
        return merged.to_bytes()
 | 
						|
    else:
 | 
						|
        return b""
 | 
						|
 | 
						|
 | 
						|
def pickle_bin(doc_bin):
 | 
						|
    return (unpickle_bin, (doc_bin.to_bytes(),))
 | 
						|
 | 
						|
 | 
						|
def unpickle_bin(byte_string):
 | 
						|
    return DocBin().from_bytes(byte_string)
 | 
						|
 | 
						|
 | 
						|
copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
 | 
						|
# Compatibility, as we had named it this previously.
 | 
						|
Binder = DocBin
 | 
						|
 | 
						|
__all__ = ["DocBin"]
 |