mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
a79cd3542b
* Fix docstring for EntityRenderer * Add warning in displacy if doc.spans are empty * Implement parse_spans converter One notable change here is that the default spans_key is sc, and it's set by the user through the options. * Implement SpanRenderer Here, I implemented a SpanRenderer that looks similar to the EntityRenderer except for some templates. The spans_key, by default, is set to sc, but can be configured in the options (see parse_spans). The way I rendered these spans is per-token, i.e., I first check if each token (1) belongs to a given span type and (2) a starting token of a given span type. Once I have this information, I render them into the markup. * Fix mypy issues on typing * Add tests for displacy spans support * Update colors from RGB to hex Co-authored-by: Ines Montani <ines@ines.io> * Remove unnecessary CSS properties * Add documentation for website * Remove unnecesasry scripts * Update wording on the documentation Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Put typing dependency on top of file * Put back z-index so that spans overlap properly * Make warning more explicit for spans_key Co-authored-by: Ines Montani <ines@ines.io> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
320 lines
11 KiB
Python
320 lines
11 KiB
Python
import numpy
|
||
import pytest
|
||
|
||
from spacy import displacy
|
||
from spacy.displacy.render import DependencyRenderer, EntityRenderer
|
||
from spacy.lang.en import English
|
||
from spacy.lang.fa import Persian
|
||
from spacy.tokens import Span, Doc
|
||
|
||
|
||
@pytest.mark.issue(2361)
|
||
def test_issue2361(de_vocab):
|
||
"""Test if < is escaped when rendering"""
|
||
chars = ("<", ">", "&", """)
|
||
words = ["<", ">", "&", '"']
|
||
doc = Doc(de_vocab, words=words, deps=["dep"] * len(words))
|
||
html = displacy.render(doc)
|
||
for char in chars:
|
||
assert char in html
|
||
|
||
|
||
@pytest.mark.issue(2728)
|
||
def test_issue2728(en_vocab):
|
||
"""Test that displaCy ENT visualizer escapes HTML correctly."""
|
||
doc = Doc(en_vocab, words=["test", "<RELEASE>", "test"])
|
||
doc.ents = [Span(doc, 0, 1, label="TEST")]
|
||
html = displacy.render(doc, style="ent")
|
||
assert "<RELEASE>" in html
|
||
doc.ents = [Span(doc, 1, 2, label="TEST")]
|
||
html = displacy.render(doc, style="ent")
|
||
assert "<RELEASE>" in html
|
||
|
||
|
||
@pytest.mark.issue(3288)
|
||
def test_issue3288(en_vocab):
|
||
"""Test that retokenization works correctly via displaCy when punctuation
|
||
is merged onto the preceeding token and tensor is resized."""
|
||
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
|
||
heads = [1, 1, 1, 4, 4, 6, 4, 4]
|
||
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
|
||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
|
||
displacy.render(doc)
|
||
|
||
|
||
@pytest.mark.issue(3531)
|
||
def test_issue3531():
|
||
"""Test that displaCy renderer doesn't require "settings" key."""
|
||
example_dep = {
|
||
"words": [
|
||
{"text": "But", "tag": "CCONJ"},
|
||
{"text": "Google", "tag": "PROPN"},
|
||
{"text": "is", "tag": "VERB"},
|
||
{"text": "starting", "tag": "VERB"},
|
||
{"text": "from", "tag": "ADP"},
|
||
{"text": "behind.", "tag": "ADV"},
|
||
],
|
||
"arcs": [
|
||
{"start": 0, "end": 3, "label": "cc", "dir": "left"},
|
||
{"start": 1, "end": 3, "label": "nsubj", "dir": "left"},
|
||
{"start": 2, "end": 3, "label": "aux", "dir": "left"},
|
||
{"start": 3, "end": 4, "label": "prep", "dir": "right"},
|
||
{"start": 4, "end": 5, "label": "pcomp", "dir": "right"},
|
||
],
|
||
}
|
||
example_ent = {
|
||
"text": "But Google is starting from behind.",
|
||
"ents": [{"start": 4, "end": 10, "label": "ORG"}],
|
||
}
|
||
dep_html = displacy.render(example_dep, style="dep", manual=True)
|
||
assert dep_html
|
||
ent_html = displacy.render(example_ent, style="ent", manual=True)
|
||
assert ent_html
|
||
|
||
|
||
@pytest.mark.issue(3882)
|
||
def test_issue3882(en_vocab):
|
||
"""Test that displaCy doesn't serialize the doc.user_data when making a
|
||
copy of the Doc.
|
||
"""
|
||
doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"])
|
||
doc.user_data["test"] = set()
|
||
displacy.parse_deps(doc)
|
||
|
||
|
||
@pytest.mark.issue(5838)
|
||
def test_issue5838():
|
||
# Displacy's EntityRenderer break line
|
||
# not working after last entity
|
||
sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n"
|
||
nlp = English()
|
||
doc = nlp(sample_text)
|
||
doc.ents = [Span(doc, 7, 8, label="test")]
|
||
html = displacy.render(doc, style="ent")
|
||
found = html.count("</br>")
|
||
assert found == 4
|
||
|
||
|
||
def test_displacy_parse_spans(en_vocab):
|
||
"""Test that spans on a Doc are converted into displaCy's format."""
|
||
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
|
||
doc.spans["sc"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")]
|
||
spans = displacy.parse_spans(doc)
|
||
assert isinstance(spans, dict)
|
||
assert spans["text"] == "Welcome to the Bank of China "
|
||
assert spans["spans"] == [
|
||
{
|
||
"start": 15,
|
||
"end": 28,
|
||
"start_token": 3,
|
||
"end_token": 6,
|
||
"label": "ORG",
|
||
"kb_id": "",
|
||
"kb_url": "#",
|
||
},
|
||
{
|
||
"start": 23,
|
||
"end": 28,
|
||
"start_token": 5,
|
||
"end_token": 6,
|
||
"label": "GPE",
|
||
"kb_id": "",
|
||
"kb_url": "#",
|
||
},
|
||
]
|
||
|
||
|
||
def test_displacy_parse_spans_with_kb_id_options(en_vocab):
|
||
"""Test that spans with kb_id on a Doc are converted into displaCy's format"""
|
||
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
|
||
doc.spans["sc"] = [
|
||
Span(doc, 3, 6, "ORG", kb_id="Q790068"),
|
||
Span(doc, 5, 6, "GPE", kb_id="Q148"),
|
||
]
|
||
|
||
spans = displacy.parse_spans(
|
||
doc, {"kb_url_template": "https://wikidata.org/wiki/{}"}
|
||
)
|
||
assert isinstance(spans, dict)
|
||
assert spans["text"] == "Welcome to the Bank of China "
|
||
assert spans["spans"] == [
|
||
{
|
||
"start": 15,
|
||
"end": 28,
|
||
"start_token": 3,
|
||
"end_token": 6,
|
||
"label": "ORG",
|
||
"kb_id": "Q790068",
|
||
"kb_url": "https://wikidata.org/wiki/Q790068",
|
||
},
|
||
{
|
||
"start": 23,
|
||
"end": 28,
|
||
"start_token": 5,
|
||
"end_token": 6,
|
||
"label": "GPE",
|
||
"kb_id": "Q148",
|
||
"kb_url": "https://wikidata.org/wiki/Q148",
|
||
},
|
||
]
|
||
|
||
|
||
def test_displacy_parse_spans_different_spans_key(en_vocab):
|
||
"""Test that spans in a different spans key will be parsed"""
|
||
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
|
||
doc.spans["sc"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")]
|
||
doc.spans["custom"] = [Span(doc, 3, 6, "BANK")]
|
||
spans = displacy.parse_spans(doc, options={"spans_key": "custom"})
|
||
|
||
assert isinstance(spans, dict)
|
||
assert spans["text"] == "Welcome to the Bank of China "
|
||
assert spans["spans"] == [
|
||
{
|
||
"start": 15,
|
||
"end": 28,
|
||
"start_token": 3,
|
||
"end_token": 6,
|
||
"label": "BANK",
|
||
"kb_id": "",
|
||
"kb_url": "#",
|
||
}
|
||
]
|
||
|
||
|
||
def test_displacy_parse_ents(en_vocab):
|
||
"""Test that named entities on a Doc are converted into displaCy's format."""
|
||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||
ents = displacy.parse_ents(doc)
|
||
assert isinstance(ents, dict)
|
||
assert ents["text"] == "But Google is starting from behind "
|
||
assert ents["ents"] == [
|
||
{"start": 4, "end": 10, "label": "ORG", "kb_id": "", "kb_url": "#"}
|
||
]
|
||
|
||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")]
|
||
ents = displacy.parse_ents(doc)
|
||
assert isinstance(ents, dict)
|
||
assert ents["text"] == "But Google is starting from behind "
|
||
assert ents["ents"] == [
|
||
{"start": 4, "end": 10, "label": "ORG", "kb_id": "Q95", "kb_url": "#"}
|
||
]
|
||
|
||
|
||
def test_displacy_parse_ents_with_kb_id_options(en_vocab):
|
||
"""Test that named entities with kb_id on a Doc are converted into displaCy's format."""
|
||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")]
|
||
|
||
ents = displacy.parse_ents(
|
||
doc, {"kb_url_template": "https://www.wikidata.org/wiki/{}"}
|
||
)
|
||
assert isinstance(ents, dict)
|
||
assert ents["text"] == "But Google is starting from behind "
|
||
assert ents["ents"] == [
|
||
{
|
||
"start": 4,
|
||
"end": 10,
|
||
"label": "ORG",
|
||
"kb_id": "Q95",
|
||
"kb_url": "https://www.wikidata.org/wiki/Q95",
|
||
}
|
||
]
|
||
|
||
|
||
def test_displacy_parse_deps(en_vocab):
|
||
"""Test that deps and tags on a Doc are converted into displaCy's format."""
|
||
words = ["This", "is", "a", "sentence"]
|
||
heads = [1, 1, 3, 1]
|
||
pos = ["DET", "VERB", "DET", "NOUN"]
|
||
tags = ["DT", "VBZ", "DT", "NN"]
|
||
deps = ["nsubj", "ROOT", "det", "attr"]
|
||
doc = Doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
|
||
deps = displacy.parse_deps(doc)
|
||
assert isinstance(deps, dict)
|
||
assert deps["words"] == [
|
||
{"lemma": None, "text": words[0], "tag": pos[0]},
|
||
{"lemma": None, "text": words[1], "tag": pos[1]},
|
||
{"lemma": None, "text": words[2], "tag": pos[2]},
|
||
{"lemma": None, "text": words[3], "tag": pos[3]},
|
||
]
|
||
assert deps["arcs"] == [
|
||
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
|
||
{"start": 2, "end": 3, "label": "det", "dir": "left"},
|
||
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
|
||
]
|
||
|
||
|
||
def test_displacy_invalid_arcs():
|
||
renderer = DependencyRenderer()
|
||
words = [{"text": "This", "tag": "DET"}, {"text": "is", "tag": "VERB"}]
|
||
arcs = [
|
||
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
|
||
{"start": -1, "end": 2, "label": "det", "dir": "left"},
|
||
]
|
||
with pytest.raises(ValueError):
|
||
renderer.render([{"words": words, "arcs": arcs}])
|
||
|
||
|
||
def test_displacy_spans(en_vocab):
|
||
"""Test that displaCy can render Spans."""
|
||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||
html = displacy.render(doc[1:4], style="ent")
|
||
assert html.startswith("<div")
|
||
|
||
|
||
def test_displacy_raises_for_wrong_type(en_vocab):
|
||
with pytest.raises(ValueError):
|
||
displacy.render("hello world")
|
||
|
||
|
||
def test_displacy_rtl():
|
||
# Source: http://www.sobhe.ir/hazm/ – is this correct?
|
||
words = ["ما", "بسیار", "کتاب", "می\u200cخوانیم"]
|
||
# These are (likely) wrong, but it's just for testing
|
||
pos = ["PRO", "ADV", "N_PL", "V_SUB"] # needs to match lang.fa.tag_map
|
||
deps = ["foo", "bar", "foo", "baz"]
|
||
heads = [1, 0, 3, 1]
|
||
nlp = Persian()
|
||
doc = Doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
|
||
doc.ents = [Span(doc, 1, 3, label="TEST")]
|
||
html = displacy.render(doc, page=True, style="dep")
|
||
assert "direction: rtl" in html
|
||
assert 'direction="rtl"' in html
|
||
assert f'lang="{nlp.lang}"' in html
|
||
html = displacy.render(doc, page=True, style="ent")
|
||
assert "direction: rtl" in html
|
||
assert f'lang="{nlp.lang}"' in html
|
||
|
||
|
||
def test_displacy_render_wrapper(en_vocab):
|
||
"""Test that displaCy accepts custom rendering wrapper."""
|
||
|
||
def wrapper(html):
|
||
return "TEST" + html + "TEST"
|
||
|
||
displacy.set_render_wrapper(wrapper)
|
||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||
html = displacy.render(doc, style="ent")
|
||
assert html.startswith("TEST<div")
|
||
assert html.endswith("/div>TEST")
|
||
# Restore
|
||
displacy.set_render_wrapper(lambda html: html)
|
||
|
||
|
||
def test_displacy_options_case():
|
||
ents = ["foo", "BAR"]
|
||
colors = {"FOO": "red", "bar": "green"}
|
||
renderer = EntityRenderer({"ents": ents, "colors": colors})
|
||
text = "abcd"
|
||
labels = ["foo", "bar", "FOO", "BAR"]
|
||
spans = [{"start": i, "end": i + 1, "label": labels[i]} for i in range(len(text))]
|
||
result = renderer.render_ents("abcde", spans, None).split("\n\n")
|
||
assert "red" in result[0] and "foo" in result[0]
|
||
assert "green" in result[1] and "bar" in result[1]
|
||
assert "red" in result[2] and "FOO" in result[2]
|
||
assert "green" in result[3] and "BAR" in result[3]
|