mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
657af5f91f
* 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
303 lines
11 KiB
Python
303 lines
11 KiB
Python
from typing import List, Dict, Set, Iterable, Iterator, Union, Optional
|
|
from pathlib import Path
|
|
import numpy
|
|
from numpy import ndarray
|
|
import zlib
|
|
import srsly
|
|
from thinc.api import NumpyOps
|
|
|
|
from .doc import Doc
|
|
from ..vocab import Vocab
|
|
from ..compat import copy_reg
|
|
from ..attrs import SPACY, ORTH, intify_attr, IDS
|
|
from ..errors import Errors
|
|
from ..util import ensure_path, SimpleFrozenList
|
|
|
|
# fmt: off
|
|
ALL_ATTRS = ("ORTH", "NORM", "TAG", "HEAD", "DEP", "ENT_IOB", "ENT_TYPE", "ENT_KB_ID", "ENT_ID", "LEMMA", "MORPH", "POS", "SENT_START")
|
|
# fmt: on
|
|
|
|
|
|
class DocBin:
|
|
"""Pack Doc objects for binary serialization.
|
|
|
|
The DocBin class lets you efficiently serialize the information from a
|
|
collection of Doc objects. You can control which information is serialized
|
|
by passing a list of attribute IDs, and optionally also specify whether the
|
|
user data is serialized. The DocBin is faster and produces smaller data
|
|
sizes than pickle, and allows you to deserialize without executing arbitrary
|
|
Python code.
|
|
|
|
The serialization format is gzipped msgpack, where the msgpack object has
|
|
the following structure:
|
|
|
|
{
|
|
"attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
|
|
"tokens": bytes, # Serialized numpy uint64 array with the token data
|
|
"spans": List[Dict[str, bytes]], # SpanGroups data for each doc
|
|
"spaces": bytes, # Serialized numpy boolean array with spaces data
|
|
"lengths": bytes, # Serialized numpy int32 array with the doc lengths
|
|
"strings": List[unicode] # List of unique strings in the token data
|
|
"version": str, # DocBin version number
|
|
}
|
|
|
|
Strings for the words, tags, labels etc are represented by 64-bit hashes in
|
|
the token data, and every string that occurs at least once is passed via the
|
|
strings object. This means the storage is more efficient if you pack more
|
|
documents together, because you have less duplication in the strings.
|
|
|
|
A notable downside to this format is that you can't easily extract just one
|
|
document from the DocBin.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
attrs: Iterable[str] = ALL_ATTRS,
|
|
store_user_data: bool = False,
|
|
docs: Iterable[Doc] = SimpleFrozenList(),
|
|
) -> None:
|
|
"""Create a DocBin object to hold serialized annotations.
|
|
|
|
attrs (Iterable[str]): List of attributes to serialize. 'orth' and
|
|
'spacy' are always serialized, so they're not required.
|
|
store_user_data (bool): Whether to write the `Doc.user_data` to bytes/file.
|
|
docs (Iterable[Doc]): Docs to add.
|
|
|
|
DOCS: https://spacy.io/api/docbin#init
|
|
"""
|
|
int_attrs = [intify_attr(attr) for attr in attrs]
|
|
if None in int_attrs:
|
|
non_valid = [attr for attr in attrs if intify_attr(attr) is None]
|
|
raise KeyError(
|
|
Errors.E983.format(dict="attrs", key=non_valid, keys=IDS.keys())
|
|
) from None
|
|
attrs = sorted(int_attrs)
|
|
self.version = "0.1"
|
|
self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
|
|
self.attrs.insert(0, ORTH) # Ensure ORTH is always attrs[0]
|
|
self.tokens: List[ndarray] = []
|
|
self.spaces: List[ndarray] = []
|
|
self.cats: List[Dict] = []
|
|
self.span_groups: List[bytes] = []
|
|
self.user_data: List[Optional[bytes]] = []
|
|
self.flags: List[Dict] = []
|
|
self.strings: Set[str] = set()
|
|
self.store_user_data = store_user_data
|
|
for doc in docs:
|
|
self.add(doc)
|
|
|
|
def __len__(self) -> int:
|
|
"""RETURNS: The number of Doc objects added to the DocBin."""
|
|
return len(self.tokens)
|
|
|
|
def add(self, doc: Doc) -> None:
|
|
"""Add a Doc's annotations to the DocBin for serialization.
|
|
|
|
doc (Doc): The Doc object to add.
|
|
|
|
DOCS: https://spacy.io/api/docbin#add
|
|
"""
|
|
array = doc.to_array(self.attrs)
|
|
if len(array.shape) == 1:
|
|
array = array.reshape((array.shape[0], 1))
|
|
self.tokens.append(array)
|
|
spaces = doc.to_array(SPACY)
|
|
assert array.shape[0] == spaces.shape[0] # this should never happen
|
|
spaces = spaces.reshape((spaces.shape[0], 1))
|
|
self.spaces.append(numpy.asarray(spaces, dtype=bool))
|
|
self.flags.append({"has_unknown_spaces": doc.has_unknown_spaces})
|
|
for token in doc:
|
|
self.strings.add(token.text)
|
|
self.strings.add(token.tag_)
|
|
self.strings.add(token.lemma_)
|
|
self.strings.add(token.norm_)
|
|
self.strings.add(str(token.morph))
|
|
self.strings.add(token.dep_)
|
|
self.strings.add(token.ent_type_)
|
|
self.strings.add(token.ent_kb_id_)
|
|
self.strings.add(token.ent_id_)
|
|
self.cats.append(doc.cats)
|
|
self.user_data.append(srsly.msgpack_dumps(doc.user_data))
|
|
self.span_groups.append(doc.spans.to_bytes())
|
|
for key, group in doc.spans.items():
|
|
for span in group:
|
|
self.strings.add(span.label_)
|
|
|
|
def get_docs(self, vocab: Vocab) -> Iterator[Doc]:
|
|
"""Recover Doc objects from the annotations, using the given vocab.
|
|
Note that the user data of each doc will be read (if available) and returned,
|
|
regardless of the setting of 'self.store_user_data'.
|
|
|
|
vocab (Vocab): The shared vocab.
|
|
YIELDS (Doc): The Doc objects.
|
|
|
|
DOCS: https://spacy.io/api/docbin#get_docs
|
|
"""
|
|
for string in self.strings:
|
|
vocab[string]
|
|
orth_col = self.attrs.index(ORTH)
|
|
for i in range(len(self.tokens)):
|
|
flags = self.flags[i]
|
|
tokens = self.tokens[i]
|
|
spaces: Optional[ndarray] = self.spaces[i]
|
|
if flags.get("has_unknown_spaces"):
|
|
spaces = None
|
|
doc = Doc(vocab, words=tokens[:, orth_col], spaces=spaces) # type: ignore
|
|
doc = doc.from_array(self.attrs, tokens) # type: ignore
|
|
doc.cats = self.cats[i]
|
|
if self.span_groups[i]:
|
|
doc.spans.from_bytes(self.span_groups[i])
|
|
else:
|
|
doc.spans.clear()
|
|
if i < len(self.user_data) and self.user_data[i] is not None:
|
|
user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
|
|
doc.user_data.update(user_data)
|
|
yield doc
|
|
|
|
def merge(self, other: "DocBin") -> None:
|
|
"""Extend the annotations of this DocBin with the annotations from
|
|
another. Will raise an error if the pre-defined attrs of the two
|
|
DocBins don't match, or if they differ in whether or not to store
|
|
user data.
|
|
|
|
other (DocBin): The DocBin to merge into the current bin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#merge
|
|
"""
|
|
if self.attrs != other.attrs:
|
|
raise ValueError(
|
|
Errors.E166.format(param="attrs", current=self.attrs, other=other.attrs)
|
|
)
|
|
if self.store_user_data != other.store_user_data:
|
|
raise ValueError(
|
|
Errors.E166.format(
|
|
param="store_user_data",
|
|
current=self.store_user_data,
|
|
other=other.store_user_data,
|
|
)
|
|
)
|
|
self.tokens.extend(other.tokens)
|
|
self.spaces.extend(other.spaces)
|
|
self.strings.update(other.strings)
|
|
self.cats.extend(other.cats)
|
|
self.span_groups.extend(other.span_groups)
|
|
self.flags.extend(other.flags)
|
|
self.user_data.extend(other.user_data)
|
|
|
|
def to_bytes(self) -> bytes:
|
|
"""Serialize the DocBin's annotations to a bytestring.
|
|
|
|
RETURNS (bytes): The serialized DocBin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#to_bytes
|
|
"""
|
|
for tokens in self.tokens:
|
|
assert len(tokens.shape) == 2, tokens.shape # this should never happen
|
|
lengths = [len(tokens) for tokens in self.tokens]
|
|
tokens = numpy.vstack(self.tokens) if self.tokens else numpy.asarray([])
|
|
spaces = numpy.vstack(self.spaces) if self.spaces else numpy.asarray([])
|
|
msg = {
|
|
"version": self.version,
|
|
"attrs": self.attrs,
|
|
"tokens": tokens.tobytes("C"),
|
|
"spaces": spaces.tobytes("C"),
|
|
"lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
|
|
"strings": list(sorted(self.strings)),
|
|
"cats": self.cats,
|
|
"flags": self.flags,
|
|
"span_groups": self.span_groups,
|
|
}
|
|
if self.store_user_data:
|
|
msg["user_data"] = self.user_data
|
|
return zlib.compress(srsly.msgpack_dumps(msg))
|
|
|
|
def from_bytes(self, bytes_data: bytes) -> "DocBin":
|
|
"""Deserialize the DocBin's annotations from a bytestring.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
RETURNS (DocBin): The loaded DocBin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#from_bytes
|
|
"""
|
|
try:
|
|
msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
|
|
except zlib.error:
|
|
raise ValueError(Errors.E1014)
|
|
self.attrs = msg["attrs"]
|
|
self.strings = set(msg["strings"])
|
|
lengths = numpy.frombuffer(msg["lengths"], dtype="int32")
|
|
flat_spaces = numpy.frombuffer(msg["spaces"], dtype=bool)
|
|
flat_tokens = numpy.frombuffer(msg["tokens"], dtype="uint64")
|
|
shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
|
|
flat_tokens = flat_tokens.reshape(shape)
|
|
flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
|
|
self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
|
|
self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
|
|
self.cats = msg["cats"]
|
|
self.span_groups = msg.get("span_groups", [b"" for _ in lengths])
|
|
self.flags = msg.get("flags", [{} for _ in lengths])
|
|
if "user_data" in msg:
|
|
self.user_data = list(msg["user_data"])
|
|
else:
|
|
self.user_data = [None] * len(self)
|
|
for tokens in self.tokens:
|
|
assert len(tokens.shape) == 2, tokens.shape # this should never happen
|
|
return self
|
|
|
|
def to_disk(self, path: Union[str, Path]) -> None:
|
|
"""Save the DocBin to a file (typically called .spacy).
|
|
|
|
path (str / Path): The file path.
|
|
|
|
DOCS: https://spacy.io/api/docbin#to_disk
|
|
"""
|
|
path = ensure_path(path)
|
|
with path.open("wb") as file_:
|
|
try:
|
|
file_.write(self.to_bytes())
|
|
except ValueError:
|
|
raise ValueError(Errors.E870)
|
|
|
|
def from_disk(self, path: Union[str, Path]) -> "DocBin":
|
|
"""Load the DocBin from a file (typically called .spacy).
|
|
|
|
path (str / Path): The file path.
|
|
RETURNS (DocBin): The loaded DocBin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#to_disk
|
|
"""
|
|
path = ensure_path(path)
|
|
with path.open("rb") as file_:
|
|
self.from_bytes(file_.read())
|
|
return self
|
|
|
|
|
|
def merge_bins(bins):
|
|
merged = None
|
|
for byte_string in bins:
|
|
if byte_string is not None:
|
|
doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
|
|
if merged is None:
|
|
merged = doc_bin
|
|
else:
|
|
merged.merge(doc_bin)
|
|
if merged is not None:
|
|
return merged.to_bytes()
|
|
else:
|
|
return b""
|
|
|
|
|
|
def pickle_bin(doc_bin):
|
|
return (unpickle_bin, (doc_bin.to_bytes(),))
|
|
|
|
|
|
def unpickle_bin(byte_string):
|
|
return DocBin().from_bytes(byte_string)
|
|
|
|
|
|
copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
|
|
# Compatibility, as we had named it this previously.
|
|
Binder = DocBin
|
|
|
|
__all__ = ["DocBin"]
|